| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnnlt.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 2 |  | llnnlt.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
						
							| 3 | 1 | pltirr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁 )  →  ¬  𝑋  <  𝑋 ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ¬  𝑋  <  𝑋 ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝑋  <  𝑋  ↔  𝑋  <  𝑌 ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝑋  =  𝑌  →  ( ¬  𝑋  <  𝑋  ↔  ¬  𝑋  <  𝑌 ) ) | 
						
							| 7 | 4 6 | syl5ibcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ( 𝑋  =  𝑌  →  ¬  𝑋  <  𝑌 ) ) | 
						
							| 8 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 9 | 8 1 | pltle | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ( 𝑋  <  𝑌  →  𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 10 | 8 2 | llncmp | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ( 𝑋 ( le ‘ 𝐾 ) 𝑌  ↔  𝑋  =  𝑌 ) ) | 
						
							| 11 | 9 10 | sylibd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ( 𝑋  <  𝑌  →  𝑋  =  𝑌 ) ) | 
						
							| 12 | 11 | necon3ad | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ( 𝑋  ≠  𝑌  →  ¬  𝑋  <  𝑌 ) ) | 
						
							| 13 | 7 12 | pm2.61dne | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑌  ∈  𝑁 )  →  ¬  𝑋  <  𝑌 ) |