| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llnset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
llnset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 3 |
|
llnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
llnset.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 5 |
|
elex |
⊢ ( 𝐾 ∈ 𝐷 → 𝐾 ∈ V ) |
| 6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
| 7 |
6 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
| 9 |
8 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = ( ⋖ ‘ 𝐾 ) ) |
| 11 |
10 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = 𝐶 ) |
| 12 |
11
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 ↔ 𝑝 𝐶 𝑥 ) ) |
| 13 |
9 12
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 ) ) |
| 14 |
7 13
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 15 |
|
df-llines |
⊢ LLines = ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } ) |
| 16 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 17 |
16
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ∈ V |
| 18 |
14 15 17
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( LLines ‘ 𝐾 ) = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 19 |
4 18
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 20 |
5 19
|
syl |
⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |