Metamath Proof Explorer


Theorem lltropt

Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024) (Revised by Scott Fenton, 21-Feb-2025)

Ref Expression
Assertion lltropt ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 ssltleft ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )
2 ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )
3 snnzg ( 𝐴 No → { 𝐴 } ≠ ∅ )
4 sslttr ( ( ( L ‘ 𝐴 ) <<s { 𝐴 } ∧ { 𝐴 } <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } ≠ ∅ ) → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
5 1 2 3 4 syl3anc ( 𝐴 No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
6 0elpw ∅ ∈ 𝒫 No
7 nulssgt ( ∅ ∈ 𝒫 No → ∅ <<s ∅ )
8 6 7 mp1i ( ¬ 𝐴 No → ∅ <<s ∅ )
9 leftf L : No ⟶ 𝒫 No
10 9 fdmi dom L = No
11 10 eleq2i ( 𝐴 ∈ dom L ↔ 𝐴 No )
12 ndmfv ( ¬ 𝐴 ∈ dom L → ( L ‘ 𝐴 ) = ∅ )
13 11 12 sylnbir ( ¬ 𝐴 No → ( L ‘ 𝐴 ) = ∅ )
14 rightf R : No ⟶ 𝒫 No
15 14 fdmi dom R = No
16 15 eleq2i ( 𝐴 ∈ dom R ↔ 𝐴 No )
17 ndmfv ( ¬ 𝐴 ∈ dom R → ( R ‘ 𝐴 ) = ∅ )
18 16 17 sylnbir ( ¬ 𝐴 No → ( R ‘ 𝐴 ) = ∅ )
19 8 13 18 3brtr4d ( ¬ 𝐴 No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
20 5 19 pm2.61i ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 )