| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltleft |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
| 2 |
|
ssltright |
⊢ ( 𝐴 ∈ No → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
| 3 |
|
snnzg |
⊢ ( 𝐴 ∈ No → { 𝐴 } ≠ ∅ ) |
| 4 |
|
sslttr |
⊢ ( ( ( L ‘ 𝐴 ) <<s { 𝐴 } ∧ { 𝐴 } <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } ≠ ∅ ) → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
| 6 |
|
0elpw |
⊢ ∅ ∈ 𝒫 No |
| 7 |
|
nulssgt |
⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) |
| 8 |
6 7
|
mp1i |
⊢ ( ¬ 𝐴 ∈ No → ∅ <<s ∅ ) |
| 9 |
|
leftf |
⊢ L : No ⟶ 𝒫 No |
| 10 |
9
|
fdmi |
⊢ dom L = No |
| 11 |
10
|
eleq2i |
⊢ ( 𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
| 12 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom L → ( L ‘ 𝐴 ) = ∅ ) |
| 13 |
11 12
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) = ∅ ) |
| 14 |
|
rightf |
⊢ R : No ⟶ 𝒫 No |
| 15 |
14
|
fdmi |
⊢ dom R = No |
| 16 |
15
|
eleq2i |
⊢ ( 𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
| 17 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom R → ( R ‘ 𝐴 ) = ∅ ) |
| 18 |
16 17
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ No → ( R ‘ 𝐴 ) = ∅ ) |
| 19 |
8 13 18
|
3brtr4d |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
| 20 |
5 19
|
pm2.61i |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |