Step |
Hyp |
Ref |
Expression |
1 |
|
ssltleft |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
2 |
|
ssltright |
⊢ ( 𝐴 ∈ No → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |
3 |
|
snnzg |
⊢ ( 𝐴 ∈ No → { 𝐴 } ≠ ∅ ) |
4 |
|
sslttr |
⊢ ( ( ( L ‘ 𝐴 ) <<s { 𝐴 } ∧ { 𝐴 } <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } ≠ ∅ ) → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
6 |
|
0elpw |
⊢ ∅ ∈ 𝒫 No |
7 |
|
nulssgt |
⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) |
8 |
6 7
|
mp1i |
⊢ ( ¬ 𝐴 ∈ No → ∅ <<s ∅ ) |
9 |
|
leftf |
⊢ L : No ⟶ 𝒫 No |
10 |
9
|
fdmi |
⊢ dom L = No |
11 |
10
|
eleq2i |
⊢ ( 𝐴 ∈ dom L ↔ 𝐴 ∈ No ) |
12 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom L → ( L ‘ 𝐴 ) = ∅ ) |
13 |
11 12
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) = ∅ ) |
14 |
|
rightf |
⊢ R : No ⟶ 𝒫 No |
15 |
14
|
fdmi |
⊢ dom R = No |
16 |
15
|
eleq2i |
⊢ ( 𝐴 ∈ dom R ↔ 𝐴 ∈ No ) |
17 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom R → ( R ‘ 𝐴 ) = ∅ ) |
18 |
16 17
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ No → ( R ‘ 𝐴 ) = ∅ ) |
19 |
8 13 18
|
3brtr4d |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
20 |
5 19
|
pm2.61i |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |