Step |
Hyp |
Ref |
Expression |
1 |
|
llytop |
⊢ ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ Top ) |
2 |
|
simprr |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) |
3 |
|
simprl |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑥 ∈ 𝑢 ) |
4 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑗 ∈ Top ) |
5 |
|
elssuni |
⊢ ( 𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗 ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑢 ⊆ ∪ 𝑗 ) |
7 |
|
eqid |
⊢ ∪ 𝑗 = ∪ 𝑗 |
8 |
7
|
restuni |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ⊆ ∪ 𝑗 ) → 𝑢 = ∪ ( 𝑗 ↾t 𝑢 ) ) |
9 |
4 6 8
|
syl2anc |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑢 = ∪ ( 𝑗 ↾t 𝑢 ) ) |
10 |
3 9
|
eleqtrd |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → 𝑥 ∈ ∪ ( 𝑗 ↾t 𝑢 ) ) |
11 |
|
eqid |
⊢ ∪ ( 𝑗 ↾t 𝑢 ) = ∪ ( 𝑗 ↾t 𝑢 ) |
12 |
11
|
1stcclb |
⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ 1stω ∧ 𝑥 ∈ ∪ ( 𝑗 ↾t 𝑢 ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) |
13 |
2 10 12
|
syl2anc |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) |
14 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) → 𝑡 ⊆ ( 𝑗 ↾t 𝑢 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑡 ⊆ ( 𝑗 ↾t 𝑢 ) ) |
16 |
15
|
sselda |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) |
17 |
4
|
adantr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑗 ∈ Top ) |
18 |
|
simpllr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → 𝑢 ∈ 𝑗 ) |
19 |
|
restopn2 |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢 ) ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢 ) ) ) |
21 |
20
|
simplbda |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) → 𝑛 ⊆ 𝑢 ) |
22 |
16 21
|
syldan |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ⊆ 𝑢 ) |
23 |
|
df-ss |
⊢ ( 𝑛 ⊆ 𝑢 ↔ ( 𝑛 ∩ 𝑢 ) = 𝑛 ) |
24 |
22 23
|
sylib |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ∩ 𝑢 ) = 𝑛 ) |
25 |
20
|
simprbda |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗 ↾t 𝑢 ) ) → 𝑛 ∈ 𝑗 ) |
26 |
16 25
|
syldan |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑛 ∈ 𝑗 ) |
27 |
24 26
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ∩ 𝑢 ) ∈ 𝑗 ) |
28 |
|
ineq1 |
⊢ ( 𝑎 = 𝑛 → ( 𝑎 ∩ 𝑢 ) = ( 𝑛 ∩ 𝑢 ) ) |
29 |
28
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) = ( 𝑛 ∈ 𝑡 ↦ ( 𝑛 ∩ 𝑢 ) ) |
30 |
27 29
|
fmptd |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) : 𝑡 ⟶ 𝑗 ) |
31 |
30
|
frnd |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
32 |
31
|
adantrr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
33 |
|
vex |
⊢ 𝑗 ∈ V |
34 |
33
|
elpw2 |
⊢ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ↔ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ⊆ 𝑗 ) |
35 |
32 34
|
sylibr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ) |
36 |
|
simprrl |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → 𝑡 ≼ ω ) |
37 |
|
1stcrestlem |
⊢ ( 𝑡 ≼ ω → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) |
39 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) |
40 |
3
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑢 ) |
41 |
39 40
|
elind |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) ) |
42 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) ) ) |
43 |
|
sseq2 |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( 𝑛 ⊆ 𝑣 ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ↔ ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
45 |
44
|
rexbidv |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
46 |
42 45
|
imbi12d |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ↔ ( 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) ) |
47 |
|
simprrr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) |
49 |
4
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑗 ∈ Top ) |
50 |
|
simpllr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → 𝑢 ∈ 𝑗 ) |
51 |
50
|
adantr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑢 ∈ 𝑗 ) |
52 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝑗 ) |
53 |
|
elrestr |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ∧ 𝑧 ∈ 𝑗 ) → ( 𝑧 ∩ 𝑢 ) ∈ ( 𝑗 ↾t 𝑢 ) ) |
54 |
49 51 52 53
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑧 ∩ 𝑢 ) ∈ ( 𝑗 ↾t 𝑢 ) ) |
55 |
46 48 54
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝑢 ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) ) |
56 |
41 55
|
mpd |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) |
57 |
3
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → 𝑥 ∈ 𝑢 ) |
58 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ↔ ( 𝑥 ∈ 𝑛 ∧ 𝑥 ∈ 𝑢 ) ) |
59 |
58
|
simplbi2com |
⊢ ( 𝑥 ∈ 𝑢 → ( 𝑥 ∈ 𝑛 → 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) |
60 |
57 59
|
syl |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑥 ∈ 𝑛 → 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) |
61 |
22
|
biantrud |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ 𝑧 ↔ ( 𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢 ) ) ) |
62 |
|
ssin |
⊢ ( ( 𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢 ) ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) |
63 |
61 62
|
bitrdi |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ 𝑧 ↔ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) ) |
64 |
|
ssinss1 |
⊢ ( 𝑛 ⊆ 𝑧 → ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) |
65 |
63 64
|
syl6bir |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) → ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) |
66 |
60 65
|
anim12d |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) ∧ 𝑛 ∈ 𝑡 ) → ( ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
67 |
66
|
reximdva |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
68 |
|
vex |
⊢ 𝑛 ∈ V |
69 |
68
|
inex1 |
⊢ ( 𝑛 ∩ 𝑢 ) ∈ V |
70 |
69
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑡 ( 𝑛 ∩ 𝑢 ) ∈ V |
71 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ) ) |
72 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) |
73 |
71 72
|
anbi12d |
⊢ ( 𝑤 = ( 𝑛 ∩ 𝑢 ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
74 |
29 73
|
rexrnmptw |
⊢ ( ∀ 𝑛 ∈ 𝑡 ( 𝑛 ∩ 𝑢 ) ∈ V → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) ) |
75 |
70 74
|
ax-mp |
⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ ( 𝑛 ∩ 𝑢 ) ∧ ( 𝑛 ∩ 𝑢 ) ⊆ 𝑧 ) ) |
76 |
67 75
|
syl6ibr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
77 |
76
|
adantrr |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ( ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ ( 𝑧 ∩ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
79 |
56 78
|
mpd |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
80 |
79
|
expr |
⊢ ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) ∧ 𝑧 ∈ 𝑗 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
81 |
80
|
ralrimiva |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
82 |
|
breq1 |
⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ) ) |
83 |
|
rexeq |
⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
84 |
83
|
imbi2d |
⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
85 |
84
|
ralbidv |
⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
86 |
82 85
|
anbi12d |
⊢ ( 𝑦 = ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
87 |
86
|
rspcev |
⊢ ( ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ∈ 𝒫 𝑗 ∧ ( ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑎 ∈ 𝑡 ↦ ( 𝑎 ∩ 𝑢 ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
88 |
35 38 81 87
|
syl12anc |
⊢ ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑛 ∈ 𝑡 ( 𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣 ) ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
89 |
13 88
|
rexlimddv |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
90 |
89
|
3adantr1 |
⊢ ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) ∧ 𝑢 ∈ 𝑗 ) ∧ ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
91 |
|
simpl |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑗 ∈ Locally 1stω ) |
92 |
1
|
adantr |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑗 ∈ Top ) |
93 |
7
|
topopn |
⊢ ( 𝑗 ∈ Top → ∪ 𝑗 ∈ 𝑗 ) |
94 |
92 93
|
syl |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∪ 𝑗 ∈ 𝑗 ) |
95 |
|
simpr |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → 𝑥 ∈ ∪ 𝑗 ) |
96 |
|
llyi |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ ∪ 𝑗 ∈ 𝑗 ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) |
97 |
91 94 95 96
|
syl3anc |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 1stω ) ) |
98 |
90 97
|
r19.29a |
⊢ ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗 ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
99 |
98
|
ralrimiva |
⊢ ( 𝑗 ∈ Locally 1stω → ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
100 |
7
|
is1stc2 |
⊢ ( 𝑗 ∈ 1stω ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
101 |
1 99 100
|
sylanbrc |
⊢ ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ 1stω ) |
102 |
101
|
ssriv |
⊢ Locally 1stω ⊆ 1stω |
103 |
|
1stcrest |
⊢ ( ( 𝑗 ∈ 1stω ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ 1stω ) |
104 |
103
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑗 ∈ 1stω ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 1stω ) |
105 |
|
1stctop |
⊢ ( 𝑗 ∈ 1stω → 𝑗 ∈ Top ) |
106 |
105
|
ssriv |
⊢ 1stω ⊆ Top |
107 |
106
|
a1i |
⊢ ( ⊤ → 1stω ⊆ Top ) |
108 |
104 107
|
restlly |
⊢ ( ⊤ → 1stω ⊆ Locally 1stω ) |
109 |
108
|
mptru |
⊢ 1stω ⊆ Locally 1stω |
110 |
102 109
|
eqssi |
⊢ Locally 1stω = 1stω |