Metamath Proof Explorer


Theorem lly1stc

Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion lly1stc Locally 1stω = 1stω

Proof

Step Hyp Ref Expression
1 llytop ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ Top )
2 simprr ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → ( 𝑗t 𝑢 ) ∈ 1stω )
3 simprl ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → 𝑥𝑢 )
4 1 ad3antrrr ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → 𝑗 ∈ Top )
5 elssuni ( 𝑢𝑗𝑢 𝑗 )
6 5 ad2antlr ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → 𝑢 𝑗 )
7 eqid 𝑗 = 𝑗
8 7 restuni ( ( 𝑗 ∈ Top ∧ 𝑢 𝑗 ) → 𝑢 = ( 𝑗t 𝑢 ) )
9 4 6 8 syl2anc ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → 𝑢 = ( 𝑗t 𝑢 ) )
10 3 9 eleqtrd ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → 𝑥 ( 𝑗t 𝑢 ) )
11 eqid ( 𝑗t 𝑢 ) = ( 𝑗t 𝑢 )
12 11 1stcclb ( ( ( 𝑗t 𝑢 ) ∈ 1stω ∧ 𝑥 ( 𝑗t 𝑢 ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) )
13 2 10 12 syl2anc ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) )
14 elpwi ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) → 𝑡 ⊆ ( 𝑗t 𝑢 ) )
15 14 adantl ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → 𝑡 ⊆ ( 𝑗t 𝑢 ) )
16 15 sselda ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → 𝑛 ∈ ( 𝑗t 𝑢 ) )
17 4 adantr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → 𝑗 ∈ Top )
18 simpllr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → 𝑢𝑗 )
19 restopn2 ( ( 𝑗 ∈ Top ∧ 𝑢𝑗 ) → ( 𝑛 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑛𝑗𝑛𝑢 ) ) )
20 17 18 19 syl2anc ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → ( 𝑛 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑛𝑗𝑛𝑢 ) ) )
21 20 simplbda ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗t 𝑢 ) ) → 𝑛𝑢 )
22 16 21 syldan ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → 𝑛𝑢 )
23 df-ss ( 𝑛𝑢 ↔ ( 𝑛𝑢 ) = 𝑛 )
24 22 23 sylib ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑛𝑢 ) = 𝑛 )
25 20 simprbda ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛 ∈ ( 𝑗t 𝑢 ) ) → 𝑛𝑗 )
26 16 25 syldan ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → 𝑛𝑗 )
27 24 26 eqeltrd ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑛𝑢 ) ∈ 𝑗 )
28 ineq1 ( 𝑎 = 𝑛 → ( 𝑎𝑢 ) = ( 𝑛𝑢 ) )
29 28 cbvmptv ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) = ( 𝑛𝑡 ↦ ( 𝑛𝑢 ) )
30 27 29 fmptd ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) : 𝑡𝑗 )
31 30 frnd ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ⊆ 𝑗 )
32 31 adantrr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ⊆ 𝑗 )
33 vex 𝑗 ∈ V
34 33 elpw2 ( ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ∈ 𝒫 𝑗 ↔ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ⊆ 𝑗 )
35 32 34 sylibr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ∈ 𝒫 𝑗 )
36 simprrl ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → 𝑡 ≼ ω )
37 1stcrestlem ( 𝑡 ≼ ω → ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ≼ ω )
38 36 37 syl ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ≼ ω )
39 simprr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑥𝑧 )
40 3 ad2antrr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑥𝑢 )
41 39 40 elind ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑥 ∈ ( 𝑧𝑢 ) )
42 eleq2 ( 𝑣 = ( 𝑧𝑢 ) → ( 𝑥𝑣𝑥 ∈ ( 𝑧𝑢 ) ) )
43 sseq2 ( 𝑣 = ( 𝑧𝑢 ) → ( 𝑛𝑣𝑛 ⊆ ( 𝑧𝑢 ) ) )
44 43 anbi2d ( 𝑣 = ( 𝑧𝑢 ) → ( ( 𝑥𝑛𝑛𝑣 ) ↔ ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) ) )
45 44 rexbidv ( 𝑣 = ( 𝑧𝑢 ) → ( ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ↔ ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) ) )
46 42 45 imbi12d ( 𝑣 = ( 𝑧𝑢 ) → ( ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ↔ ( 𝑥 ∈ ( 𝑧𝑢 ) → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) ) ) )
47 simprrr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) )
48 47 adantr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) )
49 4 ad2antrr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑗 ∈ Top )
50 simpllr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → 𝑢𝑗 )
51 50 adantr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑢𝑗 )
52 simprl ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → 𝑧𝑗 )
53 elrestr ( ( 𝑗 ∈ Top ∧ 𝑢𝑗𝑧𝑗 ) → ( 𝑧𝑢 ) ∈ ( 𝑗t 𝑢 ) )
54 49 51 52 53 syl3anc ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ( 𝑧𝑢 ) ∈ ( 𝑗t 𝑢 ) )
55 46 48 54 rspcdva ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ( 𝑥 ∈ ( 𝑧𝑢 ) → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) ) )
56 41 55 mpd ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) )
57 3 ad2antrr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → 𝑥𝑢 )
58 elin ( 𝑥 ∈ ( 𝑛𝑢 ) ↔ ( 𝑥𝑛𝑥𝑢 ) )
59 58 simplbi2com ( 𝑥𝑢 → ( 𝑥𝑛𝑥 ∈ ( 𝑛𝑢 ) ) )
60 57 59 syl ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑥𝑛𝑥 ∈ ( 𝑛𝑢 ) ) )
61 22 biantrud ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑛𝑧 ↔ ( 𝑛𝑧𝑛𝑢 ) ) )
62 ssin ( ( 𝑛𝑧𝑛𝑢 ) ↔ 𝑛 ⊆ ( 𝑧𝑢 ) )
63 61 62 bitrdi ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑛𝑧𝑛 ⊆ ( 𝑧𝑢 ) ) )
64 ssinss1 ( 𝑛𝑧 → ( 𝑛𝑢 ) ⊆ 𝑧 )
65 63 64 syl6bir ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( 𝑛 ⊆ ( 𝑧𝑢 ) → ( 𝑛𝑢 ) ⊆ 𝑧 ) )
66 60 65 anim12d ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) ∧ 𝑛𝑡 ) → ( ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) → ( 𝑥 ∈ ( 𝑛𝑢 ) ∧ ( 𝑛𝑢 ) ⊆ 𝑧 ) ) )
67 66 reximdva ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → ( ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) → ∃ 𝑛𝑡 ( 𝑥 ∈ ( 𝑛𝑢 ) ∧ ( 𝑛𝑢 ) ⊆ 𝑧 ) ) )
68 vex 𝑛 ∈ V
69 68 inex1 ( 𝑛𝑢 ) ∈ V
70 69 rgenw 𝑛𝑡 ( 𝑛𝑢 ) ∈ V
71 eleq2 ( 𝑤 = ( 𝑛𝑢 ) → ( 𝑥𝑤𝑥 ∈ ( 𝑛𝑢 ) ) )
72 sseq1 ( 𝑤 = ( 𝑛𝑢 ) → ( 𝑤𝑧 ↔ ( 𝑛𝑢 ) ⊆ 𝑧 ) )
73 71 72 anbi12d ( 𝑤 = ( 𝑛𝑢 ) → ( ( 𝑥𝑤𝑤𝑧 ) ↔ ( 𝑥 ∈ ( 𝑛𝑢 ) ∧ ( 𝑛𝑢 ) ⊆ 𝑧 ) ) )
74 29 73 rexrnmptw ( ∀ 𝑛𝑡 ( 𝑛𝑢 ) ∈ V → ( ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ↔ ∃ 𝑛𝑡 ( 𝑥 ∈ ( 𝑛𝑢 ) ∧ ( 𝑛𝑢 ) ⊆ 𝑧 ) ) )
75 70 74 ax-mp ( ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ↔ ∃ 𝑛𝑡 ( 𝑥 ∈ ( 𝑛𝑢 ) ∧ ( 𝑛𝑢 ) ⊆ 𝑧 ) )
76 67 75 syl6ibr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ) → ( ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
77 76 adantrr ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ( ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
78 77 adantr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ( ∃ 𝑛𝑡 ( 𝑥𝑛𝑛 ⊆ ( 𝑧𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
79 56 78 mpd ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ ( 𝑧𝑗𝑥𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) )
80 79 expr ( ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) ∧ 𝑧𝑗 ) → ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
81 80 ralrimiva ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
82 breq1 ( 𝑦 = ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ≼ ω ) )
83 rexeq ( 𝑦 = ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) → ( ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) )
84 83 imbi2d ( 𝑦 = ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) → ( ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ↔ ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) ) )
85 84 ralbidv ( 𝑦 = ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) → ( ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ↔ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) ) )
86 82 85 anbi12d ( 𝑦 = ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) ↔ ( ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) ) ) )
87 86 rspcev ( ( ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ∈ 𝒫 𝑗 ∧ ( ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤 ∈ ran ( 𝑎𝑡 ↦ ( 𝑎𝑢 ) ) ( 𝑥𝑤𝑤𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
88 35 38 81 87 syl12anc ( ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) ∧ ( 𝑡 ∈ 𝒫 ( 𝑗t 𝑢 ) ∧ ( 𝑡 ≼ ω ∧ ∀ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑥𝑣 → ∃ 𝑛𝑡 ( 𝑥𝑛𝑛𝑣 ) ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
89 13 88 rexlimddv ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
90 89 3adantr1 ( ( ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) ∧ 𝑢𝑗 ) ∧ ( 𝑢 𝑗𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
91 simpl ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → 𝑗 ∈ Locally 1stω )
92 1 adantr ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → 𝑗 ∈ Top )
93 7 topopn ( 𝑗 ∈ Top → 𝑗𝑗 )
94 92 93 syl ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → 𝑗𝑗 )
95 simpr ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → 𝑥 𝑗 )
96 llyi ( ( 𝑗 ∈ Locally 1stω ∧ 𝑗𝑗𝑥 𝑗 ) → ∃ 𝑢𝑗 ( 𝑢 𝑗𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) )
97 91 94 95 96 syl3anc ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → ∃ 𝑢𝑗 ( 𝑢 𝑗𝑥𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 1stω ) )
98 90 97 r19.29a ( ( 𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗 ) → ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
99 98 ralrimiva ( 𝑗 ∈ Locally 1stω → ∀ 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
100 7 is1stc2 ( 𝑗 ∈ 1stω ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) ) )
101 1 99 100 sylanbrc ( 𝑗 ∈ Locally 1stω → 𝑗 ∈ 1stω )
102 101 ssriv Locally 1stω ⊆ 1stω
103 1stcrest ( ( 𝑗 ∈ 1stω ∧ 𝑥𝑗 ) → ( 𝑗t 𝑥 ) ∈ 1stω )
104 103 adantl ( ( ⊤ ∧ ( 𝑗 ∈ 1stω ∧ 𝑥𝑗 ) ) → ( 𝑗t 𝑥 ) ∈ 1stω )
105 1stctop ( 𝑗 ∈ 1stω → 𝑗 ∈ Top )
106 105 ssriv 1stω ⊆ Top
107 106 a1i ( ⊤ → 1stω ⊆ Top )
108 104 107 restlly ( ⊤ → 1stω ⊆ Locally 1stω )
109 108 mptru 1stω ⊆ Locally 1stω
110 102 109 eqssi Locally 1stω = 1stω