Metamath Proof Explorer


Theorem llycmpkgen

Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion llycmpkgen ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 nllytop ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top )
3 simpl ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽 ) → 𝐽 ∈ 𝑛-Locally Comp )
4 1 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
5 2 4 syl ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽𝐽 )
6 5 adantr ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽 ) → 𝐽𝐽 )
7 simpr ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽 ) → 𝑥 𝐽 )
8 nllyi ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐽𝐽𝑥 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 𝐽 ∧ ( 𝐽t 𝑘 ) ∈ Comp ) )
9 3 6 7 8 syl3anc ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 𝐽 ∧ ( 𝐽t 𝑘 ) ∈ Comp ) )
10 simpr ( ( 𝑘 𝐽 ∧ ( 𝐽t 𝑘 ) ∈ Comp ) → ( 𝐽t 𝑘 ) ∈ Comp )
11 10 reximi ( ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 𝐽 ∧ ( 𝐽t 𝑘 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽t 𝑘 ) ∈ Comp )
12 9 11 syl ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽t 𝑘 ) ∈ Comp )
13 1 2 12 llycmpkgen2 ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen )