Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
|
nllytop |
⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top ) |
3 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ 𝑛-Locally Comp ) |
4 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
5 |
2 4
|
syl |
⊢ ( 𝐽 ∈ 𝑛-Locally Comp → ∪ 𝐽 ∈ 𝐽 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ 𝐽 ) |
7 |
|
simpr |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ∪ 𝐽 ) |
8 |
|
nllyi |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ ∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) |
9 |
3 6 7 8
|
syl3anc |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) |
10 |
|
simpr |
⊢ ( ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) → ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
11 |
10
|
reximi |
⊢ ( ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
12 |
9 11
|
syl |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
13 |
1 2 12
|
llycmpkgen2 |
⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen ) |