Metamath Proof Explorer


Theorem llyeq

Description: Equality theorem for the Locally A predicate. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyeq ( 𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
2 1 anbi2d ( 𝐴 = 𝐵 → ( ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
3 2 rexbidv ( 𝐴 = 𝐵 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
4 3 2ralbidv ( 𝐴 = 𝐵 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
5 4 rabbidv ( 𝐴 = 𝐵 → { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) } = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) } )
6 df-lly Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) }
7 df-lly Locally 𝐵 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) }
8 5 6 7 3eqtr4g ( 𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵 )