Metamath Proof Explorer


Theorem llyidm

Description: Idempotence of the "locally" predicate, i.e. being "locally A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyidm Locally Locally 𝐴 = Locally 𝐴

Proof

Step Hyp Ref Expression
1 llytop ( 𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Top )
2 llyi ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) → ∃ 𝑢𝑗 ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) )
3 simprr3 ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑗t 𝑢 ) ∈ Locally 𝐴 )
4 simprl ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢𝑗 )
5 ssidd ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢𝑢 )
6 1 3ad2ant1 ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) → 𝑗 ∈ Top )
7 6 adantr ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑗 ∈ Top )
8 restopn2 ( ( 𝑗 ∈ Top ∧ 𝑢𝑗 ) → ( 𝑢 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑢𝑗𝑢𝑢 ) ) )
9 7 4 8 syl2anc ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑢𝑗𝑢𝑢 ) ) )
10 4 5 9 mpbir2and ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗t 𝑢 ) )
11 simprr2 ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑦𝑢 )
12 llyi ( ( ( 𝑗t 𝑢 ) ∈ Locally 𝐴𝑢 ∈ ( 𝑗t 𝑢 ) ∧ 𝑦𝑢 ) → ∃ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) )
13 3 10 11 12 syl3anc ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) )
14 restopn2 ( ( 𝑗 ∈ Top ∧ 𝑢𝑗 ) → ( 𝑣 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑣𝑗𝑣𝑢 ) ) )
15 7 4 14 syl2anc ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑣𝑗𝑣𝑢 ) ) )
16 simpl ( ( 𝑣𝑗𝑣𝑢 ) → 𝑣𝑗 )
17 15 16 syl6bi ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗t 𝑢 ) → 𝑣𝑗 ) )
18 simprl ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣𝑗 )
19 simprr1 ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣𝑢 )
20 simprr1 ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢𝑥 )
21 20 adantr ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢𝑥 )
22 19 21 sstrd ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣𝑥 )
23 velpw ( 𝑣 ∈ 𝒫 𝑥𝑣𝑥 )
24 22 23 sylibr ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 )
25 18 24 elind ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) )
26 simprr2 ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦𝑣 )
27 7 adantr ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top )
28 simplrl ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢𝑗 )
29 restabs ( ( 𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗 ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) = ( 𝑗t 𝑣 ) )
30 27 19 28 29 syl3anc ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) = ( 𝑗t 𝑣 ) )
31 simprr3 ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 )
32 30 31 eqeltrrd ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗t 𝑣 ) ∈ 𝐴 )
33 25 26 32 jca32 ( ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) )
34 33 ex ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣𝑗 ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) ) )
35 17 34 syland ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ ( 𝑗t 𝑢 ) ∧ ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) ) )
36 35 reximdv2 ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ ( 𝑗t 𝑢 ) ( 𝑣𝑢𝑦𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) )
37 13 36 mpd ( ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
38 2 37 rexlimddv ( ( 𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
39 38 3expb ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ ( 𝑥𝑗𝑦𝑥 ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
40 39 ralrimivva ( 𝑗 ∈ Locally Locally 𝐴 → ∀ 𝑥𝑗𝑦𝑥𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
41 islly ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑣 ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) )
42 1 40 41 sylanbrc ( 𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Locally 𝐴 )
43 42 ssriv Locally Locally 𝐴 ⊆ Locally 𝐴
44 llyrest ( ( 𝑗 ∈ Locally 𝐴𝑥𝑗 ) → ( 𝑗t 𝑥 ) ∈ Locally 𝐴 )
45 44 adantl ( ( ⊤ ∧ ( 𝑗 ∈ Locally 𝐴𝑥𝑗 ) ) → ( 𝑗t 𝑥 ) ∈ Locally 𝐴 )
46 llytop ( 𝑗 ∈ Locally 𝐴𝑗 ∈ Top )
47 46 ssriv Locally 𝐴 ⊆ Top
48 47 a1i ( ⊤ → Locally 𝐴 ⊆ Top )
49 45 48 restlly ( ⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴 )
50 49 mptru Locally 𝐴 ⊆ Locally Locally 𝐴
51 43 50 eqssi Locally Locally 𝐴 = Locally 𝐴