| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							llytop | 
							⊢ ( 𝑗  ∈  Locally  Locally  𝐴  →  𝑗  ∈  Top )  | 
						
						
							| 2 | 
							
								
							 | 
							llyi | 
							⊢ ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  →  ∃ 𝑢  ∈  𝑗 ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simprr3 | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑢  ∈  𝑗 )  | 
						
						
							| 5 | 
							
								
							 | 
							ssidd | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑢  ⊆  𝑢 )  | 
						
						
							| 6 | 
							
								1
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  →  𝑗  ∈  Top )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑗  ∈  Top )  | 
						
						
							| 8 | 
							
								
							 | 
							restopn2 | 
							⊢ ( ( 𝑗  ∈  Top  ∧  𝑢  ∈  𝑗 )  →  ( 𝑢  ∈  ( 𝑗  ↾t  𝑢 )  ↔  ( 𝑢  ∈  𝑗  ∧  𝑢  ⊆  𝑢 ) ) )  | 
						
						
							| 9 | 
							
								7 4 8
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( 𝑢  ∈  ( 𝑗  ↾t  𝑢 )  ↔  ( 𝑢  ∈  𝑗  ∧  𝑢  ⊆  𝑢 ) ) )  | 
						
						
							| 10 | 
							
								4 5 9
							 | 
							mpbir2and | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑢  ∈  ( 𝑗  ↾t  𝑢 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr2 | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑦  ∈  𝑢 )  | 
						
						
							| 12 | 
							
								
							 | 
							llyi | 
							⊢ ( ( ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴  ∧  𝑢  ∈  ( 𝑗  ↾t  𝑢 )  ∧  𝑦  ∈  𝑢 )  →  ∃ 𝑣  ∈  ( 𝑗  ↾t  𝑢 ) ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 13 | 
							
								3 10 11 12
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ∃ 𝑣  ∈  ( 𝑗  ↾t  𝑢 ) ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							restopn2 | 
							⊢ ( ( 𝑗  ∈  Top  ∧  𝑢  ∈  𝑗 )  →  ( 𝑣  ∈  ( 𝑗  ↾t  𝑢 )  ↔  ( 𝑣  ∈  𝑗  ∧  𝑣  ⊆  𝑢 ) ) )  | 
						
						
							| 15 | 
							
								7 4 14
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( 𝑣  ∈  ( 𝑗  ↾t  𝑢 )  ↔  ( 𝑣  ∈  𝑗  ∧  𝑣  ⊆  𝑢 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑣  ∈  𝑗  ∧  𝑣  ⊆  𝑢 )  →  𝑣  ∈  𝑗 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							biimtrdi | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( 𝑣  ∈  ( 𝑗  ↾t  𝑢 )  →  𝑣  ∈  𝑗 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑣  ∈  𝑗 )  | 
						
						
							| 19 | 
							
								
							 | 
							simprr1 | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑣  ⊆  𝑢 )  | 
						
						
							| 20 | 
							
								
							 | 
							simprr1 | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  𝑢  ⊆  𝑥 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑢  ⊆  𝑥 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sstrd | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑣  ⊆  𝑥 )  | 
						
						
							| 23 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑣  ∈  𝒫  𝑥  ↔  𝑣  ⊆  𝑥 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑣  ∈  𝒫  𝑥 )  | 
						
						
							| 25 | 
							
								18 24
							 | 
							elind | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simprr2 | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑦  ∈  𝑣 )  | 
						
						
							| 27 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑗  ∈  Top )  | 
						
						
							| 28 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  𝑢  ∈  𝑗 )  | 
						
						
							| 29 | 
							
								
							 | 
							restabs | 
							⊢ ( ( 𝑗  ∈  Top  ∧  𝑣  ⊆  𝑢  ∧  𝑢  ∈  𝑗 )  →  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  =  ( 𝑗  ↾t  𝑣 ) )  | 
						
						
							| 30 | 
							
								27 19 28 29
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  =  ( 𝑗  ↾t  𝑣 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simprr3 | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							eqeltrrd | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 )  | 
						
						
							| 33 | 
							
								25 26 32
							 | 
							jca32 | 
							⊢ ( ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  ∧  ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) ) )  →  ( 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 )  ∧  ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ex | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( ( 𝑣  ∈  𝑗  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) )  →  ( 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 )  ∧  ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) ) ) )  | 
						
						
							| 35 | 
							
								17 34
							 | 
							syland | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( ( 𝑣  ∈  ( 𝑗  ↾t  𝑢 )  ∧  ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 ) )  →  ( 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 )  ∧  ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							reximdv2 | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ( ∃ 𝑣  ∈  ( 𝑗  ↾t  𝑢 ) ( 𝑣  ⊆  𝑢  ∧  𝑦  ∈  𝑣  ∧  ( ( 𝑗  ↾t  𝑢 )  ↾t  𝑣 )  ∈  𝐴 )  →  ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) ) )  | 
						
						
							| 37 | 
							
								13 36
							 | 
							mpd | 
							⊢ ( ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑢  ∈  𝑗  ∧  ( 𝑢  ⊆  𝑥  ∧  𝑦  ∈  𝑢  ∧  ( 𝑗  ↾t  𝑢 )  ∈  Locally  𝐴 ) ) )  →  ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 38 | 
							
								2 37
							 | 
							rexlimddv | 
							⊢ ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 )  →  ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							3expb | 
							⊢ ( ( 𝑗  ∈  Locally  Locally  𝐴  ∧  ( 𝑥  ∈  𝑗  ∧  𝑦  ∈  𝑥 ) )  →  ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralrimivva | 
							⊢ ( 𝑗  ∈  Locally  Locally  𝐴  →  ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							islly | 
							⊢ ( 𝑗  ∈  Locally  𝐴  ↔  ( 𝑗  ∈  Top  ∧  ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( 𝑗  ∩  𝒫  𝑥 ) ( 𝑦  ∈  𝑣  ∧  ( 𝑗  ↾t  𝑣 )  ∈  𝐴 ) ) )  | 
						
						
							| 42 | 
							
								1 40 41
							 | 
							sylanbrc | 
							⊢ ( 𝑗  ∈  Locally  Locally  𝐴  →  𝑗  ∈  Locally  𝐴 )  | 
						
						
							| 43 | 
							
								42
							 | 
							ssriv | 
							⊢ Locally  Locally  𝐴  ⊆  Locally  𝐴  | 
						
						
							| 44 | 
							
								
							 | 
							llyrest | 
							⊢ ( ( 𝑗  ∈  Locally  𝐴  ∧  𝑥  ∈  𝑗 )  →  ( 𝑗  ↾t  𝑥 )  ∈  Locally  𝐴 )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑗  ∈  Locally  𝐴  ∧  𝑥  ∈  𝑗 ) )  →  ( 𝑗  ↾t  𝑥 )  ∈  Locally  𝐴 )  | 
						
						
							| 46 | 
							
								
							 | 
							llytop | 
							⊢ ( 𝑗  ∈  Locally  𝐴  →  𝑗  ∈  Top )  | 
						
						
							| 47 | 
							
								46
							 | 
							ssriv | 
							⊢ Locally  𝐴  ⊆  Top  | 
						
						
							| 48 | 
							
								47
							 | 
							a1i | 
							⊢ ( ⊤  →  Locally  𝐴  ⊆  Top )  | 
						
						
							| 49 | 
							
								45 48
							 | 
							restlly | 
							⊢ ( ⊤  →  Locally  𝐴  ⊆  Locally  Locally  𝐴 )  | 
						
						
							| 50 | 
							
								49
							 | 
							mptru | 
							⊢ Locally  𝐴  ⊆  Locally  Locally  𝐴  | 
						
						
							| 51 | 
							
								43 50
							 | 
							eqssi | 
							⊢ Locally  Locally  𝐴  =  Locally  𝐴  |