| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) |
| 2 |
1
|
anim2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 3 |
2
|
reximdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 4 |
3
|
ralimdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 5 |
4
|
ralimdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 6 |
5
|
anim2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) → ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) ) |
| 7 |
|
islly |
⊢ ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 8 |
|
islly |
⊢ ( 𝑗 ∈ Locally 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 9 |
6 7 8
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Locally 𝐵 ) ) |
| 10 |
9
|
ssrdv |
⊢ ( 𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵 ) |