Metamath Proof Explorer


Theorem llyss

Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyss ( 𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 → ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
2 1 anim2d ( 𝐴𝐵 → ( ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) → ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
3 2 reximdv ( 𝐴𝐵 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) → ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
4 3 ralimdv ( 𝐴𝐵 → ( ∀ 𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
5 4 ralimdv ( 𝐴𝐵 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
6 5 anim2d ( 𝐴𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ) → ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) ) )
7 islly ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ) )
8 islly ( 𝑗 ∈ Locally 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
9 6 7 8 3imtr4g ( 𝐴𝐵 → ( 𝑗 ∈ Locally 𝐴𝑗 ∈ Locally 𝐵 ) )
10 9 ssrdv ( 𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵 )