| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmbr.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
lmfval |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 4 |
3
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ) ) |
| 5 |
|
reseq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) |
| 6 |
5
|
feq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ 𝑢 ↔ 𝑃 ∈ 𝑢 ) ) |
| 11 |
10
|
imbi1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑥 = 𝑃 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 13 |
9 12
|
sylan9bb |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑃 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 14 |
|
df-3an |
⊢ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 15 |
14
|
opabbii |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } |
| 16 |
13 15
|
brab2a |
⊢ ( 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 17 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 18 |
16 17
|
bitr4i |
⊢ ( 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 19 |
4 18
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |