Step |
Hyp |
Ref |
Expression |
1 |
|
lmbr.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
lmbr2.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
lmbr2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
1
|
lmbr |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ) ) |
5 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
6 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
7 |
|
reseq2 |
⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
8 |
|
id |
⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → 𝑧 = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
7 8
|
feq12d |
⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) ) |
10 |
9
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) ) |
11 |
5 6 10
|
mp2b |
⊢ ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) |
12 |
|
pmfun |
⊢ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) → Fun 𝐹 ) |
13 |
12
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → Fun 𝐹 ) |
14 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → 𝑀 ∈ ℤ ) |
18 |
2
|
rexuz3 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
20 |
16 19
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
21 |
11 20
|
syl5bb |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
22 |
21
|
imbi2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
23 |
22
|
ralbidv |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
24 |
23
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
25 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ) |
26 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
27 |
24 25 26
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
28 |
4 27
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |