| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmbr.2 | 
							⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							lmbr2.4 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							lmbr2.5 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							lmbrf.6 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ 𝑋 )  | 
						
						
							| 5 | 
							
								
							 | 
							lmbrf.7 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 6 | 
							
								1 2 3
							 | 
							lmbr2 | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 9 | 
							
								5
							 | 
							eleq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑢  ↔  𝐴  ∈  𝑢 ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 11 | 
							
								10
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  dom  𝐹  ↔  𝑘  ∈  𝑍 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpar | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 13 | 
							
								12
							 | 
							biantrurd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							bitr3d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐴  ∈  𝑢  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐴  ∈  𝑢  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐴  ∈  𝑢  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralbidva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rexbidva | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							imbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 )  ↔  ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ralbidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 )  ↔  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							anbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							toponmax | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝐽 )  | 
						
						
							| 23 | 
							
								1 22
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐽 )  | 
						
						
							| 24 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 25 | 
							
								23 24
							 | 
							jctir | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  𝐽  ∧  ℂ  ∈  V ) )  | 
						
						
							| 26 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 27 | 
							
								
							 | 
							zsscn | 
							⊢ ℤ  ⊆  ℂ  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sstri | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℂ  | 
						
						
							| 29 | 
							
								2 28
							 | 
							eqsstri | 
							⊢ 𝑍  ⊆  ℂ  | 
						
						
							| 30 | 
							
								4 29
							 | 
							jctir | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  | 
						
						
							| 31 | 
							
								
							 | 
							elpm2r | 
							⊢ ( ( ( 𝑋  ∈  𝐽  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 32 | 
							
								25 30 31
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							biantrurd | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) )  | 
						
						
							| 34 | 
							
								21 33
							 | 
							bitr2d | 
							⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 ) ) ) )  | 
						
						
							| 35 | 
							
								7 34
							 | 
							bitrid | 
							⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 ) ) ) )  | 
						
						
							| 36 | 
							
								6 35
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝐴  ∈  𝑢 ) ) ) )  |