| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcau.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | methaus | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Haus ) | 
						
							| 3 |  | lmfun | ⊢ ( 𝐽  ∈  Haus  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 4 |  | funfvbrb | ⊢ ( Fun  ( ⇝𝑡 ‘ 𝐽 )  →  ( 𝑓  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑓  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 | 1 6 | lmmbr | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ↔  ( 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ∈  𝑋  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ( 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ∈  𝑋  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 9 | 8 | simp1d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  𝑓  ∈  ( 𝑋  ↑pm  ℂ ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 11 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 12 | 8 | simp2d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ∈  𝑋 ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ∈  𝑋 ) | 
						
							| 14 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 16 |  | uzid | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 17 | 16 | ad2antrl | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 18 | 17 | fvresd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 )  =  ( 𝑓 ‘ 𝑗 ) ) | 
						
							| 19 | 10 17 | ffvelcdmd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 )  ∈  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 20 | 18 19 | eqeltrrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( 𝑓 ‘ 𝑗 )  ∈  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 21 |  | blhalf | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  ∈  𝑋 )  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝑓 ‘ 𝑗 )  ∈  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) )  ⊆  ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 22 | 11 13 15 20 21 | syl22anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) )  ⊆  ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 23 | 10 22 | fssd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℤ  ∧  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) )  →  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 24 |  | rphalfcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  ∈  ℝ+ ) | 
						
							| 25 | 8 | simp3d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ∀ 𝑦  ∈  ℝ+ ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑥  /  2 )  →  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 )  =  ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 27 | 26 | feq3d | ⊢ ( 𝑦  =  ( 𝑥  /  2 )  →  ( ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑦  =  ( 𝑥  /  2 )  →  ( ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 29 | 28 | rspcv | ⊢ ( ( 𝑥  /  2 )  ∈  ℝ+  →  ( ∀ 𝑦  ∈  ℝ+ ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 )  →  ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 30 | 24 25 29 | syl2im | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 31 | 30 | impcom | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 32 |  | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫  ℤ | 
						
							| 33 |  | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫  ℤ  →  ℤ≥  Fn  ℤ ) | 
						
							| 34 |  | reseq2 | ⊢ ( 𝑢  =  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑓  ↾  𝑢 )  =  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 35 |  | id | ⊢ ( 𝑢  =  ( ℤ≥ ‘ 𝑗 )  →  𝑢  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 36 | 34 35 | feq12d | ⊢ ( 𝑢  =  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) )  ↔  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 37 | 36 | rexrn | ⊢ ( ℤ≥  Fn  ℤ  →  ( ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) )  ↔  ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) ) | 
						
							| 38 | 32 33 37 | mp2b | ⊢ ( ∃ 𝑢  ∈  ran  ℤ≥ ( 𝑓  ↾  𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) )  ↔  ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 39 | 31 38 | sylib | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥  /  2 ) ) ) | 
						
							| 40 | 23 39 | reximddv | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 42 |  | iscau | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ↔  ( 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ↔  ( 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) | 
						
							| 44 | 9 41 43 | mpbir2and | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) )  →  𝑓  ∈  ( Cau ‘ 𝐷 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 )  →  𝑓  ∈  ( Cau ‘ 𝐷 ) ) ) | 
						
							| 46 | 5 45 | sylbid | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑓  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  →  𝑓  ∈  ( Cau ‘ 𝐷 ) ) ) | 
						
							| 47 | 46 | ssrdv | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  dom  ( ⇝𝑡 ‘ 𝐽 )  ⊆  ( Cau ‘ 𝐷 ) ) |