Step |
Hyp |
Ref |
Expression |
1 |
|
lmcau.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
1
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
3 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
4 |
|
funfvbrb |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) |
6 |
|
id |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
1 6
|
lmmbr |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
9 |
8
|
simp1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) |
10 |
|
simprr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
11 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
12 |
8
|
simp2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) |
14 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝑥 ∈ ℝ ) |
16 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
18 |
17
|
fvresd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 ) = ( 𝑓 ‘ 𝑗 ) ) |
19 |
10 17
|
ffvelrnd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
20 |
18 19
|
eqeltrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
21 |
|
blhalf |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑓 ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
22 |
11 13 15 20 21
|
syl22anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
23 |
10 22
|
fssd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
24 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
25 |
8
|
simp3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) = ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
27 |
26
|
feq3d |
⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
29 |
28
|
rspcv |
⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
30 |
24 25 29
|
syl2im |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
31 |
30
|
impcom |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
32 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
33 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
34 |
|
reseq2 |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( 𝑓 ↾ 𝑢 ) = ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
35 |
|
id |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → 𝑢 = ( ℤ≥ ‘ 𝑗 ) ) |
36 |
34 35
|
feq12d |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
37 |
36
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
38 |
32 33 37
|
mp2b |
⊢ ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
39 |
31 38
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
40 |
23 39
|
reximddv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
42 |
|
iscau |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
44 |
9 41 43
|
mpbir2and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) |
45 |
44
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
46 |
5 45
|
sylbid |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
47 |
46
|
ssrdv |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ⇝𝑡 ‘ 𝐽 ) ⊆ ( Cau ‘ 𝐷 ) ) |