Step |
Hyp |
Ref |
Expression |
1 |
|
lmff.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
lmff.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
lmff.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
lmcls.5 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
5 |
|
lmcls.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
6 |
|
lmcld.8 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
7 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
8 |
7
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
9 |
6 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
10 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
12 |
9 11
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
13 |
1 2 3 4 5 12
|
lmcls |
⊢ ( 𝜑 → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
14 |
|
cldcls |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
16 |
13 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |