Step |
Hyp |
Ref |
Expression |
1 |
|
lmclim.2 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
lmclim.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
3anass |
⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) |
4 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
5 |
|
3anass |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) |
6 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → 𝑍 ⊆ dom 𝐹 ) |
7 |
6
|
sselda |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
8 |
7
|
biantrurd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) |
9 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
10 |
9
|
cnmetdval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) ) |
12 |
11
|
breq1d |
⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) |
13 |
12
|
pm5.32da |
⊢ ( 𝑃 ∈ ℂ → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
15 |
8 14
|
bitr3d |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
16 |
5 15
|
syl5bb |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
17 |
4 16
|
sylan2 |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
18 |
17
|
anassrs |
⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
19 |
18
|
ralbidva |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
20 |
19
|
rexbidva |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
22 |
21
|
pm5.32da |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) |
23 |
22
|
anbi2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
24 |
3 23
|
syl5bb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
25 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
26 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
27 |
26
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
28 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → 𝑀 ∈ ℤ ) |
29 |
25 27 2 28
|
lmmbr3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝑀 ∈ ℤ ) |
31 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
32 |
|
eqidd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
33 |
2 30 31 32
|
clim2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ⇝ 𝑃 ↔ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) |
34 |
33
|
pm5.32da |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
35 |
24 29 34
|
3bitr4d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |