| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmclim.2 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
lmclim.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝐹 : 𝑍 ⟶ ℂ ) |
| 4 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 5 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
| 6 |
4 5
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
| 7 |
2 6
|
eqsstri |
⊢ 𝑍 ⊆ ℂ |
| 8 |
|
cnex |
⊢ ℂ ∈ V |
| 9 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 10 |
8 8 9
|
mpanl12 |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 11 |
3 7 10
|
sylancl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 12 |
|
fdm |
⊢ ( 𝐹 : 𝑍 ⟶ ℂ → dom 𝐹 = 𝑍 ) |
| 13 |
|
eqimss2 |
⊢ ( dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹 ) |
| 14 |
3 12 13
|
3syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝑍 ⊆ dom 𝐹 ) |
| 15 |
1 2
|
lmclim |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |
| 16 |
14 15
|
syldan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |
| 17 |
11 16
|
mpbirand |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ⇝ 𝑃 ) ) |