Step |
Hyp |
Ref |
Expression |
1 |
|
lmff.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
lmff.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
lmff.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
lmcls.5 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
5 |
|
lmcls.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
6 |
|
lmcls.8 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
7 |
2 1 3
|
lmbr2 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
8 |
4 7
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
9 |
8
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
10 |
1
|
r19.2uz |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
11 |
|
inelcm |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
13 |
5 12
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
14 |
13
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
15 |
14
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
16 |
10 15
|
syl5 |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
17 |
16
|
imim2d |
⊢ ( 𝜑 → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
18 |
17
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
19 |
9 18
|
mpd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
20 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
22 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
24 |
6 23
|
sseqtrd |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
25 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ 𝑋 ) |
26 |
2 4 25
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
27 |
26 23
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
28 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
29 |
28
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
30 |
21 24 27 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
31 |
19 30
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |