| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcnp.3 | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 2 |  | lmcn.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 3 |  | cntop1 | ⊢ ( 𝐺  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 5 |  | toptopon2 | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 7 |  | lmcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 8 | 6 1 7 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 9 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 10 | 9 | cncnpi | ⊢ ( ( 𝐺  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝑃  ∈  ∪  𝐽 )  →  𝐺  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) ) | 
						
							| 11 | 2 8 10 | syl2anc | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) ) | 
						
							| 12 | 1 11 | lmcnp | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |