| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txlm.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
txlm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
txlm.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
txlm.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 5 |
|
txlm.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 6 |
|
txlm.g |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) |
| 7 |
|
lmcn2.fl |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ) |
| 8 |
|
lmcn2.gl |
⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) |
| 9 |
|
lmcn2.o |
⊢ ( 𝜑 → 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |
| 10 |
|
lmcn2.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) |
| 11 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 12 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
| 13 |
11 12
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 15 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 16 |
3 4 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 17 |
|
cntop2 |
⊢ ( 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) → 𝑁 ∈ Top ) |
| 18 |
9 17
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 19 |
|
toptopon2 |
⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 20 |
18 19
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 21 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
| 22 |
16 20 9 21
|
syl3anc |
⊢ ( 𝜑 → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
| 23 |
22
|
feqmptd |
⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑂 ‘ 𝑥 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 25 |
|
df-ov |
⊢ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) = ( 𝑂 ‘ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) |
| 26 |
24 25
|
eqtr4di |
⊢ ( 𝑥 = 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 → ( 𝑂 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) |
| 27 |
13 14 23 26
|
fmptco |
⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 28 |
27 10
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) = 𝐻 ) |
| 29 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) |
| 30 |
1 2 3 4 5 6 29
|
txlm |
⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) ) |
| 31 |
7 8 30
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) |
| 32 |
31 9
|
lmcn |
⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) ( ⇝𝑡 ‘ 𝑁 ) ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 33 |
28 32
|
eqbrtrrd |
⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ 𝑁 ) ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 34 |
|
df-ov |
⊢ ( 𝑅 𝑂 𝑆 ) = ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) |
| 35 |
33 34
|
breqtrrdi |
⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ 𝑁 ) ( 𝑅 𝑂 𝑆 ) ) |