Metamath Proof Explorer


Theorem lmcn2

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014)

Ref Expression
Hypotheses txlm.z 𝑍 = ( ℤ𝑀 )
txlm.m ( 𝜑𝑀 ∈ ℤ )
txlm.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
txlm.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
txlm.f ( 𝜑𝐹 : 𝑍𝑋 )
txlm.g ( 𝜑𝐺 : 𝑍𝑌 )
lmcn2.fl ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑅 )
lmcn2.gl ( 𝜑𝐺 ( ⇝𝑡𝐾 ) 𝑆 )
lmcn2.o ( 𝜑𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) )
lmcn2.h 𝐻 = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) 𝑂 ( 𝐺𝑛 ) ) )
Assertion lmcn2 ( 𝜑𝐻 ( ⇝𝑡𝑁 ) ( 𝑅 𝑂 𝑆 ) )

Proof

Step Hyp Ref Expression
1 txlm.z 𝑍 = ( ℤ𝑀 )
2 txlm.m ( 𝜑𝑀 ∈ ℤ )
3 txlm.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
4 txlm.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
5 txlm.f ( 𝜑𝐹 : 𝑍𝑋 )
6 txlm.g ( 𝜑𝐺 : 𝑍𝑌 )
7 lmcn2.fl ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑅 )
8 lmcn2.gl ( 𝜑𝐺 ( ⇝𝑡𝐾 ) 𝑆 )
9 lmcn2.o ( 𝜑𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) )
10 lmcn2.h 𝐻 = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) 𝑂 ( 𝐺𝑛 ) ) )
11 5 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ 𝑋 )
12 6 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐺𝑛 ) ∈ 𝑌 )
13 11 12 opelxpd ( ( 𝜑𝑛𝑍 ) → ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ∈ ( 𝑋 × 𝑌 ) )
14 eqidd ( 𝜑 → ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) = ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) )
15 txtopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) )
16 3 4 15 syl2anc ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) )
17 cntop2 ( 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) → 𝑁 ∈ Top )
18 9 17 syl ( 𝜑𝑁 ∈ Top )
19 toptopon2 ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ 𝑁 ) )
20 18 19 sylib ( 𝜑𝑁 ∈ ( TopOn ‘ 𝑁 ) )
21 cnf2 ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑁 ∈ ( TopOn ‘ 𝑁 ) ∧ 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ 𝑁 )
22 16 20 9 21 syl3anc ( 𝜑𝑂 : ( 𝑋 × 𝑌 ) ⟶ 𝑁 )
23 22 feqmptd ( 𝜑𝑂 = ( 𝑥 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑂𝑥 ) ) )
24 fveq2 ( 𝑥 = ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ → ( 𝑂𝑥 ) = ( 𝑂 ‘ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) )
25 df-ov ( ( 𝐹𝑛 ) 𝑂 ( 𝐺𝑛 ) ) = ( 𝑂 ‘ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ )
26 24 25 eqtr4di ( 𝑥 = ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ → ( 𝑂𝑥 ) = ( ( 𝐹𝑛 ) 𝑂 ( 𝐺𝑛 ) ) )
27 13 14 23 26 fmptco ( 𝜑 → ( 𝑂 ∘ ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) ) = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) 𝑂 ( 𝐺𝑛 ) ) ) )
28 27 10 eqtr4di ( 𝜑 → ( 𝑂 ∘ ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) ) = 𝐻 )
29 eqid ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) = ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ )
30 1 2 3 4 5 6 29 txlm ( 𝜑 → ( ( 𝐹 ( ⇝𝑡𝐽 ) 𝑅𝐺 ( ⇝𝑡𝐾 ) 𝑆 ) ↔ ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) ⟨ 𝑅 , 𝑆 ⟩ ) )
31 7 8 30 mpbi2and ( 𝜑 → ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) ⟨ 𝑅 , 𝑆 ⟩ )
32 31 9 lmcn ( 𝜑 → ( 𝑂 ∘ ( 𝑛𝑍 ↦ ⟨ ( 𝐹𝑛 ) , ( 𝐺𝑛 ) ⟩ ) ) ( ⇝𝑡𝑁 ) ( 𝑂 ‘ ⟨ 𝑅 , 𝑆 ⟩ ) )
33 28 32 eqbrtrrd ( 𝜑𝐻 ( ⇝𝑡𝑁 ) ( 𝑂 ‘ ⟨ 𝑅 , 𝑆 ⟩ ) )
34 df-ov ( 𝑅 𝑂 𝑆 ) = ( 𝑂 ‘ ⟨ 𝑅 , 𝑆 ⟩ )
35 33 34 breqtrrdi ( 𝜑𝐻 ( ⇝𝑡𝑁 ) ( 𝑅 𝑂 𝑆 ) )