| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmconst.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  𝑃  ∈  𝑋 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  𝑍 ) | 
						
							| 7 |  | idd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑃  ∈  𝑢  →  𝑃  ∈  𝑢 ) ) | 
						
							| 8 | 7 | ralrimdva | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ( 𝑃  ∈  𝑢  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) 𝑃  ∈  𝑢 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑗  =  𝑀  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( 𝑗  =  𝑀  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑃  ∈  𝑢  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) 𝑃  ∈  𝑢 ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( 𝑀  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) 𝑃  ∈  𝑢 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑃  ∈  𝑢 ) | 
						
							| 12 | 6 8 11 | syl6an | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑃  ∈  𝑢 ) ) | 
						
							| 13 | 12 | ralrimivw | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑃  ∈  𝑢 ) ) | 
						
							| 14 |  | simp1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 15 |  | fconst6g | ⊢ ( 𝑃  ∈  𝑋  →  ( 𝑍  ×  { 𝑃 } ) : 𝑍 ⟶ 𝑋 ) | 
						
							| 16 | 2 15 | syl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ( 𝑍  ×  { 𝑃 } ) : 𝑍 ⟶ 𝑋 ) | 
						
							| 17 |  | fvconst2g | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑍  ×  { 𝑃 } ) ‘ 𝑘 )  =  𝑃 ) | 
						
							| 18 | 2 17 | sylan | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑍  ×  { 𝑃 } ) ‘ 𝑘 )  =  𝑃 ) | 
						
							| 19 | 14 1 3 16 18 | lmbrf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑍  ×  { 𝑃 } ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑃  ∈  𝑢 ) ) ) ) | 
						
							| 20 | 2 13 19 | mpbir2and | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑀  ∈  ℤ )  →  ( 𝑍  ×  { 𝑃 } ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |