| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcvg.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
lmcvg.3 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑈 ) |
| 3 |
|
lmcvg.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
lmcvg.5 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 5 |
|
lmcvg.6 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 6 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈 ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝑈 ) ) |
| 8 |
7
|
rexralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑈 ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑃 ∈ 𝑈 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑈 ) ) ) |
| 10 |
|
lmrcl |
⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → 𝐽 ∈ Top ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 12 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 14 |
13 1 3
|
lmbr2 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 15 |
4 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐽 ↑pm ℂ ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 16 |
15
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
| 18 |
17
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
| 19 |
18
|
reximi |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
| 20 |
19
|
imim2i |
⊢ ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 21 |
20
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 22 |
16 21
|
syl |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 23 |
9 22 5
|
rspcdva |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝑈 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑈 ) ) |
| 24 |
2 23
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑈 ) |