| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdvglim.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 2 |
|
lmdvglim.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 3 |
|
lmdvglim.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 4 |
|
lmdvglim.3 |
⊢ ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ ) |
| 5 |
2 3 4
|
lmdvg |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) |
| 6 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 7 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 8 |
2 6 7
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 10 |
1 8 9
|
lmxrge0 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) ) |
| 11 |
5 10
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |