Step |
Hyp |
Ref |
Expression |
1 |
|
lmff.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
lmff.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
lmff.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
lmff.5 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
5 |
|
eldm2g |
⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
6 |
5
|
ibi |
⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
8 |
|
df-br |
⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
10 |
7 9
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
11 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
12 |
2 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
13 |
|
eleq2 |
⊢ ( 𝑗 = 𝑋 → ( 𝑦 ∈ 𝑗 ↔ 𝑦 ∈ 𝑋 ) ) |
14 |
|
feq3 |
⊢ ( 𝑗 = 𝑋 → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ↔ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑗 = 𝑋 → ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ↔ ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ↔ ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) ) |
17 |
2
|
lmbr |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) ) |
19 |
18
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) |
20 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑋 ∈ 𝐽 ) |
23 |
16 19 22
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) |
24 |
12 23
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) |
25 |
10 24
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) |
26 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
27 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
28 |
|
reseq2 |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
29 |
|
id |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → 𝑥 = ( ℤ≥ ‘ 𝑗 ) ) |
30 |
28 29
|
feq12d |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
31 |
30
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
32 |
26 27 31
|
mp2b |
⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
33 |
25 32
|
sylib |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
34 |
1
|
rexuz3 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
36 |
18
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
37 |
10 36
|
exlimddv |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
38 |
|
pmfun |
⊢ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) → Fun 𝐹 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
40 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
43 |
41
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
44 |
35 42 43
|
3bitr4d |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
45 |
33 44
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |