| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmflf.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | lmflf.2 | ⊢ 𝐿  =  ( 𝑍 filGen ( ℤ≥  “  𝑍 ) ) | 
						
							| 3 |  | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫  ℤ | 
						
							| 4 |  | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫  ℤ  →  ℤ≥  Fn  ℤ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ℤ≥  Fn  ℤ | 
						
							| 6 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 7 | 1 6 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 8 |  | imaeq2 | ⊢ ( 𝑦  =  ( ℤ≥ ‘ 𝑗 )  →  ( 𝐹  “  𝑦 )  =  ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 9 | 8 | sseq1d | ⊢ ( 𝑦  =  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝐹  “  𝑦 )  ⊆  𝑥  ↔  ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥 ) ) | 
						
							| 10 | 9 | rexima | ⊢ ( ( ℤ≥  Fn  ℤ  ∧  𝑍  ⊆  ℤ )  →  ( ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥 ) ) | 
						
							| 11 | 5 7 10 | mp2an | ⊢ ( ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥 ) | 
						
							| 12 |  | simpl3 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 13 | 12 | ffund | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  Fun  𝐹 ) | 
						
							| 14 |  | uzss | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑗 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 15 | 14 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  ( ℤ≥ ‘ 𝑗 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  ( ℤ≥ ‘ 𝑗 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 17 | 12 | fdmd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  dom  𝐹  =  𝑍 ) | 
						
							| 18 | 17 1 | eqtrdi | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  dom  𝐹  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 19 | 16 18 | sseqtrrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  ( ℤ≥ ‘ 𝑗 )  ⊆  dom  𝐹 ) | 
						
							| 20 |  | funimass4 | ⊢ ( ( Fun  𝐹  ∧  ( ℤ≥ ‘ 𝑗 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 ) ) | 
						
							| 21 | 13 19 20 | syl2anc | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 ) ) | 
						
							| 22 | 21 | rexbidva | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( ∃ 𝑗  ∈  𝑍 ( 𝐹  “  ( ℤ≥ ‘ 𝑗 ) )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 ) ) | 
						
							| 23 | 11 22 | bitr2id | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥  ↔  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( ( 𝑃  ∈  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 )  ↔  ( 𝑃  ∈  𝑥  →  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 ) )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) ) ) | 
						
							| 27 |  | simp1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 28 |  | simp2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  𝑀  ∈  ℤ ) | 
						
							| 29 |  | simp3 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 30 |  | eqidd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 31 | 27 1 28 29 30 | lmbrf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑥 ) ) ) ) | 
						
							| 32 | 1 | uzfbas | ⊢ ( 𝑀  ∈  ℤ  →  ( ℤ≥  “  𝑍 )  ∈  ( fBas ‘ 𝑍 ) ) | 
						
							| 33 | 2 | flffbas | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( ℤ≥  “  𝑍 )  ∈  ( fBas ‘ 𝑍 )  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( 𝑃  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) ) ) | 
						
							| 34 | 32 33 | syl3an2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( 𝑃  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑦  ∈  ( ℤ≥  “  𝑍 ) ( 𝐹  “  𝑦 )  ⊆  𝑥 ) ) ) ) | 
						
							| 35 | 26 31 34 | 3bitr4d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  𝑃  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) ) |