Description: If F converges, then F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | lmfpm | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
2 | 1 | lmbr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
3 | 2 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
4 | 3 | simp1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |