Step |
Hyp |
Ref |
Expression |
1 |
|
lmfpm |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
2 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
3 |
|
cnex |
⊢ ℂ ∈ V |
4 |
|
elpmg |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
7 |
1 6
|
mpbid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
8 |
7
|
simprd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × 𝑋 ) ) |