Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
2 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
3 | 1 2 | lmhmlem | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) ) ) |
4 | 3 | simprld | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |