Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
2 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
3 |
1 2
|
2thd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ↔ 𝑇 ∈ LMod ) ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
6 |
4 5
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
7 |
6
|
eqcomd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ↔ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) ) |
11 |
8
|
eleq1d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ↔ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
12 |
3 10 11
|
3anbi123d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
14 |
4 13
|
isclm |
⊢ ( 𝑆 ∈ ℂMod ↔ ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
16 |
5 15
|
isclm |
⊢ ( 𝑇 ∈ ℂMod ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
17 |
12 14 16
|
3bitr4g |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod ) ) |