Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmeql.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) |
2 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
3 |
|
lmghm |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
4 |
|
ghmeql |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) |
9 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑆 ∈ LMod ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑆 ∈ LMod ) |
12 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
13 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
18 |
14 15 16 17
|
lmodvscl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
19 |
11 12 13 18
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
20 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
21 |
20
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
22 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
24 |
15 17 14 16 23
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
22 12 13 24
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) |
27 |
15 17 14 16 23
|
lmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
28 |
26 12 13 27
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
29 |
21 25 28
|
3eqtr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) |
30 |
8 19 29
|
elrabd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
31 |
30
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
32 |
31
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
34 |
14 33
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
35 |
34
|
ffnd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
36 |
14 33
|
lmhmf |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
37 |
36
|
ffnd |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
38 |
|
fndmin |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
39 |
35 37 38
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
41 |
|
eleq2 |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
42 |
41
|
raleqbi1dv |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
43 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
44 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
45 |
43 44
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
46 |
45
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
47 |
42 46
|
bitrdi |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
48 |
40 47
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
49 |
32 48
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
50 |
49
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
51 |
15 17 14 16 1
|
islss4 |
⊢ ( 𝑆 ∈ LMod → ( dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
52 |
10 51
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
53 |
5 50 52
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ) |