| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmeql.u | ⊢ 𝑈  =  ( LSubSp ‘ 𝑆 ) | 
						
							| 2 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 3 |  | lmghm | ⊢ ( 𝐺  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 4 |  | ghmeql | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑧  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) ) ) | 
						
							| 9 |  | lmhmlmod1 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑆  ∈  LMod ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑆  ∈  LMod ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 13 |  | simprl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 18 | 14 15 16 17 | lmodvscl | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 19 | 11 12 13 18 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 | ad2antll | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 22 |  | simplll | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 24 | 15 17 14 16 23 | lmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 22 12 13 24 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 |  | simpllr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 27 | 15 17 14 16 23 | lmhmlin | ⊢ ( ( 𝐺  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 28 | 26 12 13 27 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 29 | 21 25 28 | 3eqtr4d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 30 | 8 19 29 | elrabd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 31 | 30 | expr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 34 | 14 33 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 35 | 34 | ffnd | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 36 | 14 33 | lmhmf | ⊢ ( 𝐺  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 37 | 36 | ffnd | ⊢ ( 𝐺  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐺  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 38 |  | fndmin | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  𝐺  Fn  ( Base ‘ 𝑆 ) )  →  dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 39 | 35 37 38 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  →  dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 41 |  | eleq2 | ⊢ ( dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  →  ( ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 )  ↔  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 42 | 41 | raleqbi1dv | ⊢ ( dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  →  ( ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 )  ↔  ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 45 | 43 44 | eqeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 46 | 45 | ralrab | ⊢ ( ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 47 | 42 46 | bitrdi | ⊢ ( dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  →  ( ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) ) | 
						
							| 48 | 40 47 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  →  ( ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) ) | 
						
							| 49 | 32 48 | mpbird | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  →  ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 50 | 49 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 51 | 15 17 14 16 1 | islss4 | ⊢ ( 𝑆  ∈  LMod  →  ( dom  ( 𝐹  ∩  𝐺 )  ∈  𝑈  ↔  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 ) ) ) ) | 
						
							| 52 | 10 51 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ( dom  ( 𝐹  ∩  𝐺 )  ∈  𝑈  ↔  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦  ∈  dom  ( 𝐹  ∩  𝐺 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  dom  ( 𝐹  ∩  𝐺 ) ) ) ) | 
						
							| 53 | 5 50 52 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  LMHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  𝑈 ) |