Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| lmhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| Assertion | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | lmhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 4 | 1 2 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |