Metamath Proof Explorer


Theorem lmhmf

Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmf.b 𝐵 = ( Base ‘ 𝑆 )
lmhmf.c 𝐶 = ( Base ‘ 𝑇 )
Assertion lmhmf ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 lmhmf.b 𝐵 = ( Base ‘ 𝑆 )
2 lmhmf.c 𝐶 = ( Base ‘ 𝑇 )
3 lmghm ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
4 1 2 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵𝐶 )
5 3 4 syl ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵𝐶 )