| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmhmf1o.x | 
							⊢ 𝑋  =  ( Base ‘ 𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							lmhmf1o.y | 
							⊢ 𝑌  =  ( Base ‘ 𝑇 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑇 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑇 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmhmlmod2 | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑇  ∈  LMod )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  𝑇  ∈  LMod )  | 
						
						
							| 10 | 
							
								
							 | 
							lmhmlmod1 | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  𝑆  ∈  LMod )  | 
						
						
							| 12 | 
							
								6 5
							 | 
							lmhmsca | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑆 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqcomd | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑇 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑇 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							lmghm | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  | 
						
						
							| 16 | 
							
								1 2
							 | 
							ghmf1o | 
							⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ↔  ◡ 𝐹  ∈  ( 𝑇  GrpHom  𝑆 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ↔  ◡ 𝐹  ∈  ( 𝑇  GrpHom  𝑆 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							biimpa | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ◡ 𝐹  ∈  ( 𝑇  GrpHom  𝑆 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  | 
						
						
							| 20 | 
							
								14
							 | 
							fveq2d | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eleq2d | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ↔  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpar | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantrr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 )  | 
						
						
							| 25 | 
							
								
							 | 
							f1of | 
							⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ◡ 𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  ◡ 𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ◡ 𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 28 | 
							
								27
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑏  ∈  𝑌 )  →  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝑋 )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantrl | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝑋 )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) )  | 
						
						
							| 31 | 
							
								6 30 1 4 3
							 | 
							lmhmlin | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) )  | 
						
						
							| 32 | 
							
								19 23 29 31
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							f1ocnvfv2 | 
							⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  𝑏  ∈  𝑌 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2ant2l | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  | 
						
						
							| 38 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  𝑆  ∈  LMod )  | 
						
						
							| 39 | 
							
								1 6 4 30
							 | 
							lmodvscl | 
							⊢ ( ( 𝑆  ∈  LMod  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝑋 )  →  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) )  ∈  𝑋 )  | 
						
						
							| 40 | 
							
								38 23 29 39
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) )  ∈  𝑋 )  | 
						
						
							| 41 | 
							
								
							 | 
							f1ocnvfv | 
							⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  →  ( ◡ 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) )  | 
						
						
							| 42 | 
							
								37 40 41
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  →  ( ◡ 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) )  | 
						
						
							| 43 | 
							
								36 42
							 | 
							mpd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  𝑌 ) )  →  ( ◡ 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) )  | 
						
						
							| 44 | 
							
								2 3 4 5 6 7 9 11 14 18 43
							 | 
							islmhmd | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) )  | 
						
						
							| 45 | 
							
								1 2
							 | 
							lmhmf | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : 𝑋 ⟶ 𝑌 )  | 
						
						
							| 46 | 
							
								45
							 | 
							ffnd | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  Fn  𝑋 )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) )  →  𝐹  Fn  𝑋 )  | 
						
						
							| 48 | 
							
								2 1
							 | 
							lmhmf | 
							⊢ ( ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 )  →  ◡ 𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) )  →  ◡ 𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 50 | 
							
								49
							 | 
							ffnd | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) )  →  ◡ 𝐹  Fn  𝑌 )  | 
						
						
							| 51 | 
							
								
							 | 
							dff1o4 | 
							⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ↔  ( 𝐹  Fn  𝑋  ∧  ◡ 𝐹  Fn  𝑌 ) )  | 
						
						
							| 52 | 
							
								47 50 51
							 | 
							sylanbrc | 
							⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  | 
						
						
							| 53 | 
							
								44 52
							 | 
							impbida | 
							⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ↔  ◡ 𝐹  ∈  ( 𝑇  LMHom  𝑆 ) ) )  |