Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmfgima.y |
⊢ 𝑌 = ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) |
2 |
|
lmhmfgima.x |
⊢ 𝑋 = ( 𝑆 ↾s 𝐴 ) |
3 |
|
lmhmfgima.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) |
4 |
|
lmhmfgima.xf |
⊢ ( 𝜑 → 𝑋 ∈ LFinGen ) |
5 |
|
lmhmfgima.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
6 |
|
lmhmfgima.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
7 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
9 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
2 3 9 10
|
islssfg2 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 ) ) |
12 |
8 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 ) ) |
13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 ) |
14 |
|
inss1 |
⊢ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ⊆ 𝒫 ( Base ‘ 𝑆 ) |
15 |
14
|
sseli |
⊢ ( 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝑆 ) ) |
16 |
15
|
elpwid |
⊢ ( 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑥 ⊆ ( Base ‘ 𝑆 ) ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
18 |
10 9 17
|
lmhmlsp |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) |
19 |
6 16 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝑇 ↾s ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) ) = ( 𝑇 ↾s ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
21 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → 𝑇 ∈ LMod ) |
24 |
|
imassrn |
⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 |
25 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
26 |
10 25
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
28 |
27
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝑇 ) ) |
29 |
24 28
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ⊆ ( Base ‘ 𝑇 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ⊆ ( Base ‘ 𝑇 ) ) |
31 |
|
inss2 |
⊢ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ⊆ Fin |
32 |
31
|
sseli |
⊢ ( 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑥 ∈ Fin ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → 𝑥 ∈ Fin ) |
34 |
27
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → Fun 𝐹 ) |
36 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → 𝑥 ⊆ ( Base ‘ 𝑆 ) ) |
37 |
27
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑆 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → dom 𝐹 = ( Base ‘ 𝑆 ) ) |
39 |
36 38
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → 𝑥 ⊆ dom 𝐹 ) |
40 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) ) |
41 |
35 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) ) |
42 |
|
fofi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ 𝑥 ) ∈ Fin ) |
43 |
33 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ∈ Fin ) |
44 |
|
eqid |
⊢ ( 𝑇 ↾s ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) = ( 𝑇 ↾s ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) |
45 |
17 25 44
|
islssfgi |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ 𝑥 ) ⊆ ( Base ‘ 𝑇 ) ∧ ( 𝐹 “ 𝑥 ) ∈ Fin ) → ( 𝑇 ↾s ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ∈ LFinGen ) |
46 |
23 30 43 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝑇 ↾s ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ∈ LFinGen ) |
47 |
20 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( 𝑇 ↾s ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) ) ∈ LFinGen ) |
48 |
|
imaeq2 |
⊢ ( ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝐹 “ 𝐴 ) ) |
49 |
48
|
oveq2d |
⊢ ( ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 → ( 𝑇 ↾s ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) ) = ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) ) |
50 |
49
|
eleq1d |
⊢ ( ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 → ( ( 𝑇 ↾s ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) ) ) ∈ LFinGen ↔ ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) ∈ LFinGen ) ) |
51 |
47 50
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ) → ( ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 → ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) ∈ LFinGen ) ) |
52 |
51
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑥 ) = 𝐴 → ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) ∈ LFinGen ) ) |
53 |
13 52
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ↾s ( 𝐹 “ 𝐴 ) ) ∈ LFinGen ) |
54 |
1 53
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ LFinGen ) |