| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmima.x | ⊢ 𝑋  =  ( LSubSp ‘ 𝑆 ) | 
						
							| 2 |  | lmhmima.y | ⊢ 𝑌  =  ( LSubSp ‘ 𝑇 ) | 
						
							| 3 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 4 |  | lmhmlmod1 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝑈  ∈  𝑋 ) | 
						
							| 6 | 1 | lsssubg | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑈  ∈  𝑋 )  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 7 | 4 5 6 | syl2an2r | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 8 |  | ghmima | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝑆 ) )  →  ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 9 | 3 7 8 | syl2an2r | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 12 | 10 11 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 14 |  | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 10 1 | lssss | ⊢ ( 𝑈  ∈  𝑋  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 17 | 5 16 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 18 | 15 17 | fvelimabd | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( 𝑏  ∈  ( 𝐹  “  𝑈 )  ↔  ∃ 𝑐  ∈  𝑈 ( 𝐹 ‘ 𝑐 )  =  𝑏 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  →  ( 𝑏  ∈  ( 𝐹  “  𝑈 )  ↔  ∃ 𝑐  ∈  𝑈 ( 𝐹 ‘ 𝑐 )  =  𝑏 ) ) | 
						
							| 20 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 22 |  | eqid | ⊢ ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑇 ) | 
						
							| 23 | 21 22 | lmhmsca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ↔  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 27 | 26 | biimpa | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 28 | 27 | adantrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 29 | 17 | sselda | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑐  ∈  𝑈 )  →  𝑐  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 30 | 29 | adantrl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑐  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 32 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 33 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 34 | 21 31 10 32 33 | lmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑐  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 35 | 20 28 30 34 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 36 | 20 12 14 | 3syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 37 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑈  ∈  𝑋 ) | 
						
							| 38 | 37 16 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 39 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝑆  ∈  LMod ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑆  ∈  LMod ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  𝑐  ∈  𝑈 ) | 
						
							| 42 | 21 32 31 1 | lssvscl | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑐  ∈  𝑈 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 )  ∈  𝑈 ) | 
						
							| 43 | 40 37 28 41 42 | syl22anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 )  ∈  𝑈 ) | 
						
							| 44 |  | fnfvima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  𝑈  ⊆  ( Base ‘ 𝑆 )  ∧  ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 )  ∈  𝑈 )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 45 | 36 38 43 44 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( 𝑎 (  ·𝑠  ‘ 𝑆 ) 𝑐 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 46 | 35 45 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑐  ∈  𝑈 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 47 | 46 | anassrs | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  ∧  𝑐  ∈  𝑈 )  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑐 )  =  𝑏  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) )  =  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 ) ) | 
						
							| 49 | 48 | eleq1d | ⊢ ( ( 𝐹 ‘ 𝑐 )  =  𝑏  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) )  ∈  ( 𝐹  “  𝑈 )  ↔  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 50 | 47 49 | syl5ibcom | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  ∧  𝑐  ∈  𝑈 )  →  ( ( 𝐹 ‘ 𝑐 )  =  𝑏  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 51 | 50 | rexlimdva | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  →  ( ∃ 𝑐  ∈  𝑈 ( 𝐹 ‘ 𝑐 )  =  𝑏  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 52 | 19 51 | sylbid | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  →  ( 𝑏  ∈  ( 𝐹  “  𝑈 )  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 53 | 52 | impr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  𝑏  ∈  ( 𝐹  “  𝑈 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 54 | 53 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏  ∈  ( 𝐹  “  𝑈 ) ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 55 |  | lmhmlmod2 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑇  ∈  LMod ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  𝑇  ∈  LMod ) | 
						
							| 57 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) ) | 
						
							| 58 | 22 57 11 33 2 | islss4 | ⊢ ( 𝑇  ∈  LMod  →  ( ( 𝐹  “  𝑈 )  ∈  𝑌  ↔  ( ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏  ∈  ( 𝐹  “  𝑈 ) ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) ) | 
						
							| 59 | 56 58 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( ( 𝐹  “  𝑈 )  ∈  𝑌  ↔  ( ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏  ∈  ( 𝐹  “  𝑈 ) ( 𝑎 (  ·𝑠  ‘ 𝑇 ) 𝑏 )  ∈  ( 𝐹  “  𝑈 ) ) ) ) | 
						
							| 60 | 9 54 59 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑈  ∈  𝑋 )  →  ( 𝐹  “  𝑈 )  ∈  𝑌 ) |