Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmimasvsca.w |
⊢ 𝑊 = ( 𝐹 “s 𝑉 ) |
2 |
|
lmhmimasvsca.b |
⊢ 𝐵 = ( Base ‘ 𝑉 ) |
3 |
|
lmhmimasvsca.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
4 |
|
lmhmimasvsca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
5 |
|
lmhmimasvsca.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
lmhmimasvsca.1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ 𝐶 ) |
7 |
|
lmhmimasvsca.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ) |
8 |
|
lmhmimasvsca.2 |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
9 |
|
lmhmimasvsca.3 |
⊢ × = ( ·𝑠 ‘ 𝑊 ) |
10 |
|
lmhmimasvsca.k |
⊢ 𝐾 = ( Base ‘ ( Scalar ‘ 𝑉 ) ) |
11 |
1
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝐹 “s 𝑉 ) ) |
12 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑉 ) ) |
13 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) → 𝑉 ∈ LMod ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ LMod ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑝 × ( 𝐹 ‘ 𝑎 ) ) = ( 𝑝 × ( 𝐹 ‘ 𝑞 ) ) ) |
18 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ) |
19 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑝 ∈ 𝐾 ) |
20 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑎 ∈ 𝐵 ) |
21 |
15 10 2 8 9
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ∧ 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝑝 × ( 𝐹 ‘ 𝑎 ) ) ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝑝 × ( 𝐹 ‘ 𝑎 ) ) ) |
23 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑞 ∈ 𝐵 ) |
24 |
15 10 2 8 9
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ∧ 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝑝 × ( 𝐹 ‘ 𝑞 ) ) ) |
25 |
18 19 23 24
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝑝 × ( 𝐹 ‘ 𝑞 ) ) ) |
26 |
17 22 25
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
28 |
11 12 6 14 15 10 8 9 27
|
imasvscaval |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
29 |
4 5 28
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |