Metamath Proof Explorer


Theorem lmhmimasvsca

Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lmhmimasvsca.w 𝑊 = ( 𝐹s 𝑉 )
lmhmimasvsca.b 𝐵 = ( Base ‘ 𝑉 )
lmhmimasvsca.c 𝐶 = ( Base ‘ 𝑊 )
lmhmimasvsca.x ( 𝜑𝑋𝐾 )
lmhmimasvsca.y ( 𝜑𝑌𝐵 )
lmhmimasvsca.1 ( 𝜑𝐹 : 𝐵onto𝐶 )
lmhmimasvsca.f ( 𝜑𝐹 ∈ ( 𝑉 LMHom 𝑊 ) )
lmhmimasvsca.2 · = ( ·𝑠𝑉 )
lmhmimasvsca.3 × = ( ·𝑠𝑊 )
lmhmimasvsca.k 𝐾 = ( Base ‘ ( Scalar ‘ 𝑉 ) )
Assertion lmhmimasvsca ( 𝜑 → ( 𝑋 × ( 𝐹𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 lmhmimasvsca.w 𝑊 = ( 𝐹s 𝑉 )
2 lmhmimasvsca.b 𝐵 = ( Base ‘ 𝑉 )
3 lmhmimasvsca.c 𝐶 = ( Base ‘ 𝑊 )
4 lmhmimasvsca.x ( 𝜑𝑋𝐾 )
5 lmhmimasvsca.y ( 𝜑𝑌𝐵 )
6 lmhmimasvsca.1 ( 𝜑𝐹 : 𝐵onto𝐶 )
7 lmhmimasvsca.f ( 𝜑𝐹 ∈ ( 𝑉 LMHom 𝑊 ) )
8 lmhmimasvsca.2 · = ( ·𝑠𝑉 )
9 lmhmimasvsca.3 × = ( ·𝑠𝑊 )
10 lmhmimasvsca.k 𝐾 = ( Base ‘ ( Scalar ‘ 𝑉 ) )
11 1 a1i ( 𝜑𝑊 = ( 𝐹s 𝑉 ) )
12 2 a1i ( 𝜑𝐵 = ( Base ‘ 𝑉 ) )
13 lmhmlmod1 ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) → 𝑉 ∈ LMod )
14 7 13 syl ( 𝜑𝑉 ∈ LMod )
15 eqid ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 )
16 simpr ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → ( 𝐹𝑎 ) = ( 𝐹𝑞 ) )
17 16 oveq2d ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → ( 𝑝 × ( 𝐹𝑎 ) ) = ( 𝑝 × ( 𝐹𝑞 ) ) )
18 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) )
19 simplr1 ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → 𝑝𝐾 )
20 simplr2 ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → 𝑎𝐵 )
21 15 10 2 8 9 lmhmlin ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ∧ 𝑝𝐾𝑎𝐵 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝑝 × ( 𝐹𝑎 ) ) )
22 18 19 20 21 syl3anc ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝑝 × ( 𝐹𝑎 ) ) )
23 simplr3 ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → 𝑞𝐵 )
24 15 10 2 8 9 lmhmlin ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑊 ) ∧ 𝑝𝐾𝑞𝐵 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝑝 × ( 𝐹𝑞 ) ) )
25 18 19 23 24 syl3anc ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝑝 × ( 𝐹𝑞 ) ) )
26 17 22 25 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) )
27 26 ex ( ( 𝜑 ∧ ( 𝑝𝐾𝑎𝐵𝑞𝐵 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
28 11 12 6 14 15 10 8 9 27 imasvscaval ( ( 𝜑𝑋𝐾𝑌𝐵 ) → ( 𝑋 × ( 𝐹𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) )
29 4 5 28 mpd3an23 ( 𝜑 → ( 𝑋 × ( 𝐹𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) )