Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlin.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
2 |
|
lmhmlin.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
lmhmlin.e |
⊢ 𝐸 = ( Base ‘ 𝑆 ) |
4 |
|
lmhmlin.m |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |
5 |
|
lmhmlin.n |
⊢ × = ( ·𝑠 ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
7 |
1 6 2 3 4 5
|
islmhm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
8 |
7
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) ) |
9 |
8
|
simp3d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑏 = 𝑌 → ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑌 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
18 |
12 17
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
19 |
9 18
|
syl5com |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
20 |
19
|
3impib |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) |