Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmfgsplit.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
2 |
|
lmhmfgsplit.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
3 |
|
lmhmfgsplit.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝐾 ) |
4 |
|
lmhmfgsplit.v |
⊢ 𝑉 = ( 𝑇 ↾s ran 𝐹 ) |
5 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) → 𝑆 ∈ LMod ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( 𝑆 ↾s 𝑎 ) = ( 𝑆 ↾s 𝑎 ) |
9 |
7 8
|
reslmhm |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑎 ) ∈ ( ( 𝑆 ↾s 𝑎 ) LMHom 𝑇 ) ) |
10 |
9
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑎 ) ∈ ( ( 𝑆 ↾s 𝑎 ) LMHom 𝑇 ) ) |
11 |
|
cnvresima |
⊢ ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) = ( ( ◡ 𝐹 “ { 0 } ) ∩ 𝑎 ) |
12 |
2
|
eqcomi |
⊢ ( ◡ 𝐹 “ { 0 } ) = 𝐾 |
13 |
12
|
ineq1i |
⊢ ( ( ◡ 𝐹 “ { 0 } ) ∩ 𝑎 ) = ( 𝐾 ∩ 𝑎 ) |
14 |
|
incom |
⊢ ( 𝐾 ∩ 𝑎 ) = ( 𝑎 ∩ 𝐾 ) |
15 |
11 13 14
|
3eqtri |
⊢ ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) = ( 𝑎 ∩ 𝐾 ) |
16 |
15
|
oveq2i |
⊢ ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) = ( ( 𝑆 ↾s 𝑎 ) ↾s ( 𝑎 ∩ 𝐾 ) ) |
17 |
|
vex |
⊢ 𝑎 ∈ V |
18 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝐾 ) ⊆ 𝑎 |
19 |
|
ressabs |
⊢ ( ( 𝑎 ∈ V ∧ ( 𝑎 ∩ 𝐾 ) ⊆ 𝑎 ) → ( ( 𝑆 ↾s 𝑎 ) ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑆 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
20 |
17 18 19
|
mp2an |
⊢ ( ( 𝑆 ↾s 𝑎 ) ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑆 ↾s ( 𝑎 ∩ 𝐾 ) ) |
21 |
3
|
oveq1i |
⊢ ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) = ( ( 𝑆 ↾s 𝐾 ) ↾s ( 𝑎 ∩ 𝐾 ) ) |
22 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
23 |
|
cnvexg |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ◡ 𝐹 ∈ V ) |
24 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ { 0 } ) ∈ V ) |
25 |
23 24
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ◡ 𝐹 “ { 0 } ) ∈ V ) |
26 |
2 25
|
eqeltrid |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ V ) |
27 |
22 26
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝐾 ∈ V ) |
28 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝐾 ) ⊆ 𝐾 |
29 |
|
ressabs |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝑎 ∩ 𝐾 ) ⊆ 𝐾 ) → ( ( 𝑆 ↾s 𝐾 ) ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑆 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
30 |
27 28 29
|
sylancl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑆 ↾s 𝐾 ) ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑆 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
31 |
21 30
|
eqtrid |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑆 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
32 |
20 31
|
eqtr4id |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑆 ↾s 𝑎 ) ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
33 |
16 32
|
eqtrid |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) = ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) ) |
34 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝑈 ∈ LNoeM ) |
35 |
6
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝑆 ∈ LMod ) |
36 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) |
37 |
2 1 7
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) |
38 |
22 37
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) |
39 |
7
|
lssincl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ∧ 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
40 |
35 36 38 39
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
41 |
28
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑎 ∩ 𝐾 ) ⊆ 𝐾 ) |
42 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
43 |
3 7 42
|
lsslss |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑈 ) ↔ ( ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝑎 ∩ 𝐾 ) ⊆ 𝐾 ) ) ) |
44 |
35 38 43
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑈 ) ↔ ( ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝑎 ∩ 𝐾 ) ⊆ 𝐾 ) ) ) |
45 |
40 41 44
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
46 |
|
eqid |
⊢ ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) = ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) |
47 |
42 46
|
lnmlssfg |
⊢ ( ( 𝑈 ∈ LNoeM ∧ ( 𝑎 ∩ 𝐾 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) ∈ LFinGen ) |
48 |
34 45 47
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑈 ↾s ( 𝑎 ∩ 𝐾 ) ) ∈ LFinGen ) |
49 |
33 48
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) ∈ LFinGen ) |
50 |
|
incom |
⊢ ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) = ( ran ( 𝐹 ↾ 𝑎 ) ∩ ran 𝐹 ) |
51 |
|
resss |
⊢ ( 𝐹 ↾ 𝑎 ) ⊆ 𝐹 |
52 |
|
rnss |
⊢ ( ( 𝐹 ↾ 𝑎 ) ⊆ 𝐹 → ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 ) |
53 |
51 52
|
ax-mp |
⊢ ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 |
54 |
|
df-ss |
⊢ ( ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 ↔ ( ran ( 𝐹 ↾ 𝑎 ) ∩ ran 𝐹 ) = ran ( 𝐹 ↾ 𝑎 ) ) |
55 |
53 54
|
mpbi |
⊢ ( ran ( 𝐹 ↾ 𝑎 ) ∩ ran 𝐹 ) = ran ( 𝐹 ↾ 𝑎 ) |
56 |
50 55
|
eqtr2i |
⊢ ran ( 𝐹 ↾ 𝑎 ) = ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) |
57 |
56
|
oveq2i |
⊢ ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑇 ↾s ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) ) |
58 |
4
|
oveq1i |
⊢ ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( ( 𝑇 ↾s ran 𝐹 ) ↾s ran ( 𝐹 ↾ 𝑎 ) ) |
59 |
|
rnexg |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ran 𝐹 ∈ V ) |
60 |
|
resexg |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 ↾ 𝑎 ) ∈ V ) |
61 |
|
rnexg |
⊢ ( ( 𝐹 ↾ 𝑎 ) ∈ V → ran ( 𝐹 ↾ 𝑎 ) ∈ V ) |
62 |
60 61
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ran ( 𝐹 ↾ 𝑎 ) ∈ V ) |
63 |
|
ressress |
⊢ ( ( ran 𝐹 ∈ V ∧ ran ( 𝐹 ↾ 𝑎 ) ∈ V ) → ( ( 𝑇 ↾s ran 𝐹 ) ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑇 ↾s ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) ) ) |
64 |
59 62 63
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑇 ↾s ran 𝐹 ) ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑇 ↾s ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) ) ) |
65 |
58 64
|
eqtrid |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑇 ↾s ( ran 𝐹 ∩ ran ( 𝐹 ↾ 𝑎 ) ) ) ) |
66 |
57 65
|
eqtr4id |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ) |
67 |
22 66
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ) |
68 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝑉 ∈ LNoeM ) |
69 |
|
lmhmrnlss |
⊢ ( ( 𝐹 ↾ 𝑎 ) ∈ ( ( 𝑆 ↾s 𝑎 ) LMHom 𝑇 ) → ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑇 ) ) |
70 |
10 69
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑇 ) ) |
71 |
53
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 ) |
72 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
73 |
22 72
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → 𝑇 ∈ LMod ) |
74 |
|
lmhmrnlss |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) |
75 |
22 74
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) |
76 |
|
eqid |
⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) |
77 |
|
eqid |
⊢ ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 ) |
78 |
4 76 77
|
lsslss |
⊢ ( ( 𝑇 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) → ( ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑉 ) ↔ ( ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑇 ) ∧ ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 ) ) ) |
79 |
73 75 78
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑉 ) ↔ ( ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑇 ) ∧ ran ( 𝐹 ↾ 𝑎 ) ⊆ ran 𝐹 ) ) ) |
80 |
70 71 79
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑉 ) ) |
81 |
|
eqid |
⊢ ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) |
82 |
77 81
|
lnmlssfg |
⊢ ( ( 𝑉 ∈ LNoeM ∧ ran ( 𝐹 ↾ 𝑎 ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ∈ LFinGen ) |
83 |
68 80 82
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑉 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ∈ LFinGen ) |
84 |
67 83
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ∈ LFinGen ) |
85 |
|
eqid |
⊢ ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) = ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) |
86 |
|
eqid |
⊢ ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) = ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) |
87 |
|
eqid |
⊢ ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) = ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) |
88 |
1 85 86 87
|
lmhmfgsplit |
⊢ ( ( ( 𝐹 ↾ 𝑎 ) ∈ ( ( 𝑆 ↾s 𝑎 ) LMHom 𝑇 ) ∧ ( ( 𝑆 ↾s 𝑎 ) ↾s ( ◡ ( 𝐹 ↾ 𝑎 ) “ { 0 } ) ) ∈ LFinGen ∧ ( 𝑇 ↾s ran ( 𝐹 ↾ 𝑎 ) ) ∈ LFinGen ) → ( 𝑆 ↾s 𝑎 ) ∈ LFinGen ) |
89 |
10 49 84 88
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝑎 ) ∈ LFinGen ) |
90 |
89
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) → ∀ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ( 𝑆 ↾s 𝑎 ) ∈ LFinGen ) |
91 |
7
|
islnm |
⊢ ( 𝑆 ∈ LNoeM ↔ ( 𝑆 ∈ LMod ∧ ∀ 𝑎 ∈ ( LSubSp ‘ 𝑆 ) ( 𝑆 ↾s 𝑎 ) ∈ LFinGen ) ) |
92 |
6 90 91
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM ) → 𝑆 ∈ LNoeM ) |