| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmlsp.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 2 |
|
lmhmlsp.k |
⊢ 𝐾 = ( LSpan ‘ 𝑆 ) |
| 3 |
|
lmhmlsp.l |
⊢ 𝐿 = ( LSpan ‘ 𝑇 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 5 |
1 4
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 7 |
6
|
ffund |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → Fun 𝐹 ) |
| 8 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑆 ∈ LMod ) |
| 10 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ∈ LMod ) |
| 12 |
|
imassrn |
⊢ ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 |
| 13 |
6
|
frnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ran 𝐹 ⊆ ( Base ‘ 𝑇 ) ) |
| 14 |
12 13
|
sstrid |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) |
| 16 |
4 15 3
|
lspcl |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 17 |
11 14 16
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 18 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
| 19 |
18 15
|
lmhmpreima |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 20 |
17 19
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 21 |
|
incom |
⊢ ( dom 𝐹 ∩ 𝑈 ) = ( 𝑈 ∩ dom 𝐹 ) |
| 22 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ 𝑉 ) |
| 23 |
6
|
fdmd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → dom 𝐹 = 𝑉 ) |
| 24 |
22 23
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ dom 𝐹 ) |
| 25 |
|
dfss2 |
⊢ ( 𝑈 ⊆ dom 𝐹 ↔ ( 𝑈 ∩ dom 𝐹 ) = 𝑈 ) |
| 26 |
24 25
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑈 ∩ dom 𝐹 ) = 𝑈 ) |
| 27 |
21 26
|
eqtr2id |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 = ( dom 𝐹 ∩ 𝑈 ) ) |
| 28 |
|
dminss |
⊢ ( dom 𝐹 ∩ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) |
| 29 |
27 28
|
eqsstrdi |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ) |
| 30 |
4 3
|
lspssid |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 31 |
11 14 30
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 32 |
|
imass2 |
⊢ ( ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 34 |
29 33
|
sstrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 35 |
18 2
|
lspssp |
⊢ ( ( 𝑆 ∈ LMod ∧ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ∧ 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) → ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 36 |
9 20 34 35
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 37 |
|
funimass2 |
⊢ ( ( Fun 𝐹 ∧ ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 38 |
7 36 37
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 39 |
1 18 2
|
lspcl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 40 |
9 22 39
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 41 |
18 15
|
lmhmima |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 42 |
40 41
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 43 |
1 2
|
lspssid |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) ) |
| 44 |
9 22 43
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) ) |
| 45 |
|
imass2 |
⊢ ( 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 47 |
15 3
|
lspssp |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ∧ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 48 |
11 42 46 47
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 49 |
38 48
|
eqssd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) = ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |