Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmplusg.p |
⊢ + = ( +g ‘ 𝑁 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑁 ) = ( ·𝑠 ‘ 𝑁 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑁 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
8 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑀 ∈ LMod ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑀 ∈ LMod ) |
10 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑁 ∈ LMod ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ LMod ) |
12 |
5 6
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
14 |
|
lmodabl |
⊢ ( 𝑁 ∈ LMod → 𝑁 ∈ Abel ) |
15 |
11 14
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ Abel ) |
16 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
18 |
|
lmghm |
⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
20 |
1
|
ghmplusg |
⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
21 |
15 17 19 20
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
22 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) |
23 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
24 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
25 |
5 7 2 3 4
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) ) |
27 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) |
28 |
5 7 2 3 4
|
lmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
29 |
27 23 24 28
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
30 |
26 29
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
31 |
10
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑁 ∈ LMod ) |
32 |
12
|
fveq2d |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
34 |
23 33
|
eleqtrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
36 |
2 35
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
38 |
37 24
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
39 |
2 35
|
lmhmf |
⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
41 |
40 24
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
42 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑁 ) ) |
43 |
35 1 6 4 42
|
lmodvsdi |
⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
44 |
31 34 38 41 43
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
45 |
30 44
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
46 |
37
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
47 |
40
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 Fn ( Base ‘ 𝑀 ) ) |
48 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
49 |
8
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
50 |
2 5 3 7
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
51 |
49 23 24 50
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
52 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
53 |
46 47 48 51 52
|
syl22anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
54 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
55 |
46 47 48 24 54
|
syl22anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
56 |
55
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
57 |
45 53 56
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) ) |
58 |
2 3 4 5 6 7 9 11 13 21 57
|
islmhmd |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |