| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmhmplusg.p | 
							⊢  +   =  ( +g ‘ 𝑁 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑁 )  =  (  ·𝑠  ‘ 𝑁 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑁 )  =  ( Scalar ‘ 𝑁 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmhmlmod1 | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  𝑀  ∈  LMod )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  𝑀  ∈  LMod )  | 
						
						
							| 10 | 
							
								
							 | 
							lmhmlmod2 | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  𝑁  ∈  LMod )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  𝑁  ∈  LMod )  | 
						
						
							| 12 | 
							
								5 6
							 | 
							lmhmsca | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  ( Scalar ‘ 𝑁 )  =  ( Scalar ‘ 𝑀 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  ( Scalar ‘ 𝑁 )  =  ( Scalar ‘ 𝑀 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							lmodabl | 
							⊢ ( 𝑁  ∈  LMod  →  𝑁  ∈  Abel )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							syl | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  𝑁  ∈  Abel )  | 
						
						
							| 16 | 
							
								
							 | 
							lmghm | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  𝐹  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  𝐹  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							lmghm | 
							⊢ ( 𝐺  ∈  ( 𝑀  LMHom  𝑁 )  →  𝐺  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  𝐺  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							ghmplusg | 
							⊢ ( ( 𝑁  ∈  Abel  ∧  𝐹  ∈  ( 𝑀  GrpHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  GrpHom  𝑁 ) )  →  ( 𝐹  ∘f   +  𝐺 )  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 21 | 
							
								15 17 19 20
							 | 
							syl3anc | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  ( 𝐹  ∘f   +  𝐺 )  ∈  ( 𝑀  GrpHom  𝑁 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐹  ∈  ( 𝑀  LMHom  𝑁 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑀 ) )  | 
						
						
							| 25 | 
							
								5 7 2 3 4
							 | 
							lmhmlin | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 26 | 
							
								22 23 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  | 
						
						
							| 28 | 
							
								5 7 2 3 4
							 | 
							lmhmlin | 
							⊢ ( ( 𝐺  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) )  | 
						
						
							| 29 | 
							
								27 23 24 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							oveq12d | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  +  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) )  +  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) )  | 
						
						
							| 31 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝑁  ∈  LMod )  | 
						
						
							| 32 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  ( Base ‘ ( Scalar ‘ 𝑁 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑁 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  | 
						
						
							| 34 | 
							
								23 33
							 | 
							eleqtrrd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑁 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 )  | 
						
						
							| 36 | 
							
								2 35
							 | 
							lmhmf | 
							⊢ ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 38 | 
							
								37 24
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑁 ) )  | 
						
						
							| 39 | 
							
								2 35
							 | 
							lmhmf | 
							⊢ ( 𝐺  ∈  ( 𝑀  LMHom  𝑁 )  →  𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 41 | 
							
								40 24
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( Base ‘ 𝑁 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑁 ) )  =  ( Base ‘ ( Scalar ‘ 𝑁 ) )  | 
						
						
							| 43 | 
							
								35 1 6 4 42
							 | 
							lmodvsdi | 
							⊢ ( ( 𝑁  ∈  LMod  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑁 ) )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑁 )  ∧  ( 𝐺 ‘ 𝑦 )  ∈  ( Base ‘ 𝑁 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) )  +  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) )  | 
						
						
							| 44 | 
							
								31 34 38 41 43
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) )  +  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) )  | 
						
						
							| 45 | 
							
								30 44
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  +  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) ) )  | 
						
						
							| 46 | 
							
								37
							 | 
							ffnd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐹  Fn  ( Base ‘ 𝑀 ) )  | 
						
						
							| 47 | 
							
								40
							 | 
							ffnd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝐺  Fn  ( Base ‘ 𝑀 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( Base ‘ 𝑀 )  ∈  V )  | 
						
						
							| 49 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  𝑀  ∈  LMod )  | 
						
						
							| 50 | 
							
								2 5 3 7
							 | 
							lmodvscl | 
							⊢ ( ( 𝑀  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) )  | 
						
						
							| 51 | 
							
								49 23 24 50
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							fnfvof | 
							⊢ ( ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝐺  Fn  ( Base ‘ 𝑀 ) )  ∧  ( ( Base ‘ 𝑀 )  ∈  V  ∧  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  +  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) ) )  | 
						
						
							| 53 | 
							
								46 47 48 51 52
							 | 
							syl22anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  +  ( 𝐺 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							fnfvof | 
							⊢ ( ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝐺  Fn  ( Base ‘ 𝑀 ) )  ∧  ( ( Base ‘ 𝑀 )  ∈  V  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) )  | 
						
						
							| 55 | 
							
								46 47 48 24 54
							 | 
							syl22anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐺 ‘ 𝑦 ) ) ) )  | 
						
						
							| 57 | 
							
								45 53 56
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) )  →  ( ( 𝐹  ∘f   +  𝐺 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐹  ∘f   +  𝐺 ) ‘ 𝑦 ) ) )  | 
						
						
							| 58 | 
							
								2 3 4 5 6 7 9 11 13 21 57
							 | 
							islmhmd | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  LMHom  𝑁 )  ∧  𝐺  ∈  ( 𝑀  LMHom  𝑁 ) )  →  ( 𝐹  ∘f   +  𝐺 )  ∈  ( 𝑀  LMHom  𝑁 ) )  |