| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmima.x |
⊢ 𝑋 = ( LSubSp ‘ 𝑆 ) |
| 2 |
|
lmhmima.y |
⊢ 𝑌 = ( LSubSp ‘ 𝑇 ) |
| 3 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 4 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 5 |
2
|
lsssubg |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 7 |
|
ghmpreima |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 8 |
3 6 7
|
syl2an2r |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 9 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑆 ∈ LMod ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 12 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑈 ) ⊆ dom 𝐹 |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 15 |
13 14
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 17 |
12 16
|
fssdm |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 18 |
17
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 19 |
18
|
adantrl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 20 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
| 21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
| 23 |
13 20 21 22
|
lmodvscl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 24 |
10 11 19 23
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 25 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
| 27 |
20 22 13 21 26
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 |
25 11 19 27
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 29 |
4
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑇 ∈ LMod ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑈 ∈ 𝑌 ) |
| 31 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 32 |
20 31
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 35 |
34
|
eleq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
| 36 |
35
|
biimpar |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 37 |
36
|
adantrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 38 |
16
|
ffund |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → Fun 𝐹 ) |
| 39 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
| 40 |
|
fvimacnvi |
⊢ ( ( Fun 𝐹 ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 41 |
38 39 40
|
syl2an2r |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 42 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
| 43 |
31 26 42 2
|
lssvscl |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑈 ) |
| 44 |
29 30 37 41 43
|
syl22anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑈 ) |
| 45 |
28 44
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) |
| 46 |
|
ffn |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 47 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) |
| 48 |
16 46 47
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) |
| 50 |
24 45 49
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
| 51 |
50
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
| 52 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝑆 ∈ LMod ) |
| 53 |
20 22 13 21 1
|
islss4 |
⊢ ( 𝑆 ∈ LMod → ( ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 55 |
8 51 54
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ) |