| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmpropd.a | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 2 |  | lmhmpropd.b | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | lmhmpropd.c | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 4 |  | lmhmpropd.d | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | lmhmpropd.1 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐽 ) ) | 
						
							| 6 |  | lmhmpropd.2 | ⊢ ( 𝜑  →  𝐺  =  ( Scalar ‘ 𝐾 ) ) | 
						
							| 7 |  | lmhmpropd.3 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐿 ) ) | 
						
							| 8 |  | lmhmpropd.4 | ⊢ ( 𝜑  →  𝐺  =  ( Scalar ‘ 𝑀 ) ) | 
						
							| 9 |  | lmhmpropd.p | ⊢ 𝑃  =  ( Base ‘ 𝐹 ) | 
						
							| 10 |  | lmhmpropd.q | ⊢ 𝑄  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | lmhmpropd.e | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 12 |  | lmhmpropd.f | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 13 |  | lmhmpropd.g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 14 |  | lmhmpropd.h | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑄  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 15 | 1 3 11 5 7 9 13 | lmodpropd | ⊢ ( 𝜑  →  ( 𝐽  ∈  LMod  ↔  𝐿  ∈  LMod ) ) | 
						
							| 16 | 2 4 12 6 8 10 14 | lmodpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  LMod  ↔  𝑀  ∈  LMod ) ) | 
						
							| 17 | 15 16 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐽  ∈  LMod  ∧  𝐾  ∈  LMod )  ↔  ( 𝐿  ∈  LMod  ∧  𝑀  ∈  LMod ) ) ) | 
						
							| 18 | 13 | oveqrspc2v | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 )  =  ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 )  =  ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) ) ) | 
						
							| 21 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝜑 ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑧  ∈  𝑃 ) | 
						
							| 23 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝐺  =  𝐹 ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 25 | 24 10 9 | 3eqtr4g | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑄  =  𝑃 ) | 
						
							| 26 | 22 25 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑧  ∈  𝑄 ) | 
						
							| 27 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑓  ∈  ( 𝐽  GrpHom  𝐾 ) ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 30 | 28 29 | ghmf | ⊢ ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  →  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 27 30 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 32 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 33 | 21 1 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 34 | 32 33 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝑤  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 35 | 31 34 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 36 | 21 2 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 37 | 35 36 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  𝐶 ) | 
						
							| 38 | 14 | oveqrspc2v | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑄  ∧  ( 𝑓 ‘ 𝑤 )  ∈  𝐶 ) )  →  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 39 | 21 26 37 38 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 40 | 20 39 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  ∧  ( 𝑧  ∈  𝑃  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 41 | 40 | 2ralbidva | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 ) )  →  ( ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 42 | 41 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 )  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 )  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 43 |  | df-3an | ⊢ ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 )  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 44 |  | df-3an | ⊢ ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹 )  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 45 | 42 43 44 | 3bitr4g | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 46 | 6 5 | eqeq12d | ⊢ ( 𝜑  →  ( 𝐺  =  𝐹  ↔  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐽 ) ) ) | 
						
							| 47 | 5 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) | 
						
							| 48 | 9 47 | eqtrid | ⊢ ( 𝜑  →  𝑃  =  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) | 
						
							| 49 | 1 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 50 | 48 49 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 51 | 46 50 | 3anbi23d | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐽 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 52 | 1 2 3 4 11 12 | ghmpropd | ⊢ ( 𝜑  →  ( 𝐽  GrpHom  𝐾 )  =  ( 𝐿  GrpHom  𝑀 ) ) | 
						
							| 53 | 52 | eleq2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  GrpHom  𝑀 ) ) ) | 
						
							| 54 | 8 7 | eqeq12d | ⊢ ( 𝜑  →  ( 𝐺  =  𝐹  ↔  ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 55 | 7 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 56 | 9 55 | eqtrid | ⊢ ( 𝜑  →  𝑃  =  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 57 | 3 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 58 | 56 57 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) )  ↔  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | 
						
							| 59 | 53 54 58 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  𝐺  =  𝐹  ∧  ∀ 𝑧  ∈  𝑃 ∀ 𝑤  ∈  𝐵 ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ∧  ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝐿 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 60 | 45 51 59 | 3bitr3d | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐽 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) )  ↔  ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ∧  ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝐿 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 61 | 17 60 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  LMod  ∧  𝐾  ∈  LMod )  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐽 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) )  ↔  ( ( 𝐿  ∈  LMod  ∧  𝑀  ∈  LMod )  ∧  ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ∧  ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝐿 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( Scalar ‘ 𝐽 )  =  ( Scalar ‘ 𝐽 ) | 
						
							| 63 |  | eqid | ⊢ ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐾 ) | 
						
							| 64 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐽 ) )  =  ( Base ‘ ( Scalar ‘ 𝐽 ) ) | 
						
							| 65 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐽 )  =  (  ·𝑠  ‘ 𝐽 ) | 
						
							| 66 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐾 )  =  (  ·𝑠  ‘ 𝐾 ) | 
						
							| 67 | 62 63 64 28 65 66 | islmhm | ⊢ ( 𝑓  ∈  ( 𝐽  LMHom  𝐾 )  ↔  ( ( 𝐽  ∈  LMod  ∧  𝐾  ∈  LMod )  ∧  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ∧  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐽 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐽 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( Scalar ‘ 𝐿 )  =  ( Scalar ‘ 𝐿 ) | 
						
							| 69 |  | eqid | ⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 ) | 
						
							| 70 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) )  =  ( Base ‘ ( Scalar ‘ 𝐿 ) ) | 
						
							| 71 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 72 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐿 )  =  (  ·𝑠  ‘ 𝐿 ) | 
						
							| 73 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 ) | 
						
							| 74 | 68 69 70 71 72 73 | islmhm | ⊢ ( 𝑓  ∈  ( 𝐿  LMHom  𝑀 )  ↔  ( ( 𝐿  ∈  LMod  ∧  𝑀  ∈  LMod )  ∧  ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ∧  ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝐿 )  ∧  ∀ 𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 (  ·𝑠  ‘ 𝐿 ) 𝑤 ) )  =  ( 𝑧 (  ·𝑠  ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) | 
						
							| 75 | 61 67 74 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  LMHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  LMHom  𝑀 ) ) ) | 
						
							| 76 | 75 | eqrdv | ⊢ ( 𝜑  →  ( 𝐽  LMHom  𝐾 )  =  ( 𝐿  LMHom  𝑀 ) ) |