Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmpropd.a |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) |
2 |
|
lmhmpropd.b |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) |
3 |
|
lmhmpropd.c |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
4 |
|
lmhmpropd.d |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) |
5 |
|
lmhmpropd.1 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐽 ) ) |
6 |
|
lmhmpropd.2 |
⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝐾 ) ) |
7 |
|
lmhmpropd.3 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
8 |
|
lmhmpropd.4 |
⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝑀 ) ) |
9 |
|
lmhmpropd.p |
⊢ 𝑃 = ( Base ‘ 𝐹 ) |
10 |
|
lmhmpropd.q |
⊢ 𝑄 = ( Base ‘ 𝐺 ) |
11 |
|
lmhmpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
12 |
|
lmhmpropd.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
13 |
|
lmhmpropd.g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
14 |
|
lmhmpropd.h |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
15 |
1 3 11 5 7 9 13
|
lmodpropd |
⊢ ( 𝜑 → ( 𝐽 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |
16 |
2 4 12 6 8 10 14
|
lmodpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝑀 ∈ LMod ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ↔ ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ) ) |
18 |
13
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) |
20 |
19
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) ) |
21 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝜑 ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑃 ) |
23 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐺 = 𝐹 ) |
24 |
23
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐹 ) ) |
25 |
24 10 9
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑄 = 𝑃 ) |
26 |
22 25
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑄 ) |
27 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
30 |
28 29
|
ghmf |
⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) → 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) |
31 |
27 30
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) |
32 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
33 |
21 1
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ 𝐽 ) ) |
34 |
32 33
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ ( Base ‘ 𝐽 ) ) |
35 |
31 34
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
21 2
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐶 = ( Base ‘ 𝐾 ) ) |
37 |
35 36
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝐶 ) |
38 |
14
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑄 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) |
39 |
21 26 37 38
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) |
40 |
20 39
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
41 |
40
|
2ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
42 |
41
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
43 |
|
df-3an |
⊢ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
44 |
|
df-3an |
⊢ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
45 |
42 43 44
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
46 |
6 5
|
eqeq12d |
⊢ ( 𝜑 → ( 𝐺 = 𝐹 ↔ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ) ) |
47 |
5
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) |
48 |
9 47
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) |
49 |
1
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
50 |
48 49
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
51 |
46 50
|
3anbi23d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
52 |
1 2 3 4 11 12
|
ghmpropd |
⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |
53 |
52
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ) ) |
54 |
8 7
|
eqeq12d |
⊢ ( 𝜑 → ( 𝐺 = 𝐹 ↔ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ) ) |
55 |
7
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
56 |
9 55
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
57 |
3
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
58 |
56 57
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
59 |
53 54 58
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
60 |
45 51 59
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
61 |
17 60
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
62 |
|
eqid |
⊢ ( Scalar ‘ 𝐽 ) = ( Scalar ‘ 𝐽 ) |
63 |
|
eqid |
⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) |
64 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐽 ) ) = ( Base ‘ ( Scalar ‘ 𝐽 ) ) |
65 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐽 ) = ( ·𝑠 ‘ 𝐽 ) |
66 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
67 |
62 63 64 28 65 66
|
islmhm |
⊢ ( 𝑓 ∈ ( 𝐽 LMHom 𝐾 ) ↔ ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
68 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
69 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
70 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) |
71 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
72 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) |
73 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
74 |
68 69 70 71 72 73
|
islmhm |
⊢ ( 𝑓 ∈ ( 𝐿 LMHom 𝑀 ) ↔ ( ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
75 |
61 67 74
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 LMHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 LMHom 𝑀 ) ) ) |
76 |
75
|
eqrdv |
⊢ ( 𝜑 → ( 𝐽 LMHom 𝐾 ) = ( 𝐿 LMHom 𝑀 ) ) |