Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
lmhmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) ) |
3 |
|
lmhmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
lmhmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
lmhmqusker.s |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
6 |
|
lmhmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
8 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ 𝐻 ) |
10 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝐻 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
14 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) → 𝐺 ∈ LMod ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ LMod ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝐺 ) = ( LSubSp ‘ 𝐺 ) |
17 |
3 1 16
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) → 𝐾 ∈ ( LSubSp ‘ 𝐺 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( LSubSp ‘ 𝐺 ) ) |
19 |
4 13 15 18
|
quslmod |
⊢ ( 𝜑 → 𝑄 ∈ LMod ) |
20 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) → 𝐻 ∈ LMod ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ LMod ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
23 |
22 11
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) → ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝐺 ) ) |
24 |
2 23
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝐺 ) ) |
25 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
26 |
13
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
27 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
28 |
25 26 27 15 22
|
quss |
⊢ ( 𝜑 → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝑄 ) ) |
29 |
24 28
|
eqtrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝑄 ) ) |
30 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
32 |
1 31 3 4 6 5
|
ghmqusker |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |
33 |
|
gimghm |
⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
35 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
36 |
31 35
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
37 |
3 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
38 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
39 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
40 |
13 39
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
41 |
37 38 40
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
42 |
41
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
43 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
44 |
25 26 27 15
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
45 |
44
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
46 |
43 45
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
47 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ 𝑟 ) |
48 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
49 |
42 46 47 48
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
50 |
49
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) = ( 𝑘 ( ·𝑠 ‘ 𝑄 ) [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
51 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝐺 ) ) |
52 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) |
53 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐺 ∈ LMod ) |
54 |
18
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐾 ∈ ( LSubSp ‘ 𝐺 ) ) |
55 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
56 |
28
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
57 |
56
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
58 |
55 57
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ) |
59 |
41
|
qsss |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
60 |
44 59
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
61 |
60
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
62 |
61
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
63 |
62
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
64 |
63 47
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
65 |
13 39 51 52 53 54 58 4 8 64
|
qusvsval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑄 ) [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ] ( 𝐺 ~QG 𝐾 ) ) |
66 |
50 65
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) = [ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ] ( 𝐺 ~QG 𝐾 ) ) |
67 |
66
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) ) = ( 𝐽 ‘ [ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ] ( 𝐺 ~QG 𝐾 ) ) ) |
68 |
31
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
69 |
13 22 52 51
|
lmodvscl |
⊢ ( ( 𝐺 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
70 |
53 58 64 69
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
71 |
1 68 3 4 6 70
|
ghmquskerlem1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ [ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ) ) |
72 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) ) |
73 |
22 51 13 52 9
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 LMHom 𝐻 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
74 |
72 58 64 73
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝐺 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
75 |
67 71 74
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
76 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
77 |
76
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐽 ‘ 𝑟 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
78 |
75 77
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐽 ‘ 𝑟 ) ) ) |
79 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
81 |
1 79 3 4 6 80
|
ghmquskerlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
82 |
78 81
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐽 ‘ 𝑟 ) ) ) |
83 |
82
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑄 ) 𝑟 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝐽 ‘ 𝑟 ) ) ) |
84 |
7 8 9 10 11 12 19 21 29 34 83
|
islmhmd |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 LMHom 𝐻 ) ) |
85 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
86 |
7 85
|
gimf1o |
⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
87 |
32 86
|
syl |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
88 |
7 85
|
islmim |
⊢ ( 𝐽 ∈ ( 𝑄 LMIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 LMHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
89 |
84 87 88
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 LMIso 𝐻 ) ) |