Metamath Proof Explorer
Description: A homomorphism of left modules constrains both modules to the same ring
of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lmhmlem.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
|
|
lmhmlem.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
|
Assertion |
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐿 = 𝐾 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmlem.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
| 2 |
|
lmhmlem.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
| 3 |
1 2
|
lmhmlem |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ) ) ) |
| 4 |
3
|
simprrd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐿 = 𝐾 ) |