Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmvsca.v |
⊢ 𝑉 = ( Base ‘ 𝑀 ) |
2 |
|
lmhmvsca.s |
⊢ · = ( ·𝑠 ‘ 𝑁 ) |
3 |
|
lmhmvsca.j |
⊢ 𝐽 = ( Scalar ‘ 𝑁 ) |
4 |
|
lmhmvsca.k |
⊢ 𝐾 = ( Base ‘ 𝐽 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
8 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑀 ∈ LMod ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑀 ∈ LMod ) |
10 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑁 ∈ LMod ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ LMod ) |
12 |
6 3
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐽 = ( Scalar ‘ 𝑀 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐽 = ( Scalar ‘ 𝑀 ) ) |
14 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑉 ∈ V ) |
16 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝐴 ∈ 𝐾 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
18 |
1 17
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
20 |
19
|
ffvelrnda |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝑁 ) ) |
21 |
|
fconstmpt |
⊢ ( 𝑉 × { 𝐴 } ) = ( 𝑣 ∈ 𝑉 ↦ 𝐴 ) |
22 |
21
|
a1i |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑉 × { 𝐴 } ) = ( 𝑣 ∈ 𝑉 ↦ 𝐴 ) ) |
23 |
19
|
feqmptd |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 = ( 𝑣 ∈ 𝑉 ↦ ( 𝐹 ‘ 𝑣 ) ) ) |
24 |
15 16 20 22 23
|
offval2 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) ) |
25 |
|
eqidd |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑣 ) → ( 𝐴 · 𝑢 ) = ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) |
27 |
20 23 25 26
|
fmptco |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) ) |
28 |
24 27
|
eqtr4d |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) = ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ) |
29 |
|
simp2 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐴 ∈ 𝐾 ) |
30 |
17 3 2 4
|
lmodvsghm |
⊢ ( ( 𝑁 ∈ LMod ∧ 𝐴 ∈ 𝐾 ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ) |
31 |
11 29 30
|
syl2anc |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ) |
32 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
34 |
|
ghmco |
⊢ ( ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
35 |
31 33 34
|
syl2anc |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
36 |
28 35
|
eqeltrd |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
37 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐽 ∈ CRing ) |
38 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) |
39 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
40 |
13
|
fveq2d |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( Base ‘ 𝐽 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
41 |
4 40
|
eqtrid |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
43 |
39 42
|
eleqtrrd |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝐾 ) |
44 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
45 |
4 44
|
crngcom |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) ) |
46 |
37 38 43 45
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) ) |
47 |
46
|
oveq1d |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
11
|
adantr |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑁 ∈ LMod ) |
49 |
19
|
adantr |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
50 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
51 |
49 50
|
ffvelrnd |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
52 |
17 3 2 4 44
|
lmodvsass |
⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
53 |
48 38 43 51 52
|
syl13anc |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
54 |
17 3 2 4 44
|
lmodvsass |
⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
55 |
48 43 38 51 54
|
syl13anc |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
56 |
47 53 55
|
3eqtr3d |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
57 |
1 6 5 7
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
58 |
57
|
3expb |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
59 |
9 58
|
sylan |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
60 |
14
|
a1i |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 ∈ V ) |
61 |
19
|
ffnd |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 Fn 𝑉 ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
63 |
6 7 1 5 2
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
64 |
63
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
65 |
64
|
3ad2antl3 |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
67 |
60 38 62 66
|
ofc1 |
⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
68 |
59 67
|
mpdan |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
69 |
|
eqidd |
⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
70 |
60 38 62 69
|
ofc1 |
⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
71 |
50 70
|
mpdan |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
72 |
71
|
oveq2d |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
73 |
56 68 72
|
3eqtr4d |
⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ) ) |
74 |
1 5 2 6 3 7 9 11 13 36 73
|
islmhmd |
⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |