Metamath Proof Explorer
Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
|
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
|
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
|
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
lmicinv.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
|
Assertion |
lmicinv |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
lmicinv.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
11 |
1 2 3 4 5 6 7 8 9
|
lmiinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ 𝐷 ) ) |
12 |
10 11
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |