Metamath Proof Explorer


Theorem lmicqusker

Description: The image H of a module homomorphism F is isomorphic with the quotient module Q over F 's kernel K . This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses lmhmqusker.1 0 = ( 0g𝐻 )
lmhmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 LMHom 𝐻 ) )
lmhmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
lmhmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
lmhmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
Assertion lmicqusker ( 𝜑𝑄𝑚 𝐻 )

Proof

Step Hyp Ref Expression
1 lmhmqusker.1 0 = ( 0g𝐻 )
2 lmhmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 LMHom 𝐻 ) )
3 lmhmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 lmhmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 lmhmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
6 imaeq2 ( 𝑝 = 𝑞 → ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
7 6 unieqd ( 𝑝 = 𝑞 ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
8 7 cbvmptv ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
9 1 2 3 4 5 8 lmhmqusker ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 LMIso 𝐻 ) )
10 brlmici ( ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 LMIso 𝐻 ) → 𝑄𝑚 𝐻 )
11 9 10 syl ( 𝜑𝑄𝑚 𝐻 )