| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
| 7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 9 |
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
lmieq.c |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
lmieq.d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐵 ) ) |
| 12 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑀 ‘ 𝑏 ) = ( 𝑀 ‘ 𝐵 ) ↔ ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐵 ) ) ) |
| 13 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑀 ‘ 𝑏 ) = ( 𝑀 ‘ 𝐵 ) ↔ ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ 𝐵 ) ) ) |
| 14 |
1 2 3 4 5 6 7 8 10
|
lmicl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 15 |
1 2 3 4 5 6 7 8 14
|
lmireu |
⊢ ( 𝜑 → ∃! 𝑏 ∈ 𝑃 ( 𝑀 ‘ 𝑏 ) = ( 𝑀 ‘ 𝐵 ) ) |
| 16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ 𝐵 ) ) |
| 17 |
12 13 15 9 10 11 16
|
reu2eqd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |