Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmieu.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
7 |
|
lmieu.1 |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
8 |
|
lmieu.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
10 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ¬ 𝐴 = 𝑏 ) |
11 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) |
12 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐺 ∈ TarskiG ) |
13 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐺 DimTarskiG≥ 2 ) |
14 |
9
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐴 ∈ 𝑃 ) |
15 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝑏 ∈ 𝑃 ) |
16 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
17 |
1 2 3 12 13 14 15
|
midcl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑃 ) |
18 |
1 2 3 12 13 14 15 16 17
|
ismidb |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ( 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ) |
19 |
11 18
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ‘ 𝐴 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ‘ 𝐴 ) ) |
21 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐺 ∈ TarskiG ) |
22 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐷 ∈ ran 𝐿 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐷 ∈ ran 𝐿 ) |
24 |
14
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 ∈ 𝑃 ) |
25 |
15
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝑏 ∈ 𝑃 ) |
26 |
10
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐴 ≠ 𝑏 ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 ≠ 𝑏 ) |
28 |
1 3 6 21 24 25 27
|
tgelrnln |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( 𝐴 𝐿 𝑏 ) ∈ ran 𝐿 ) |
29 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) |
30 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐴 ∈ 𝐷 ) |
31 |
30
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 ∈ 𝐷 ) |
32 |
1 3 6 21 24 25 27
|
tglinerflx1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 ∈ ( 𝐴 𝐿 𝑏 ) ) |
33 |
31 32
|
elind |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 ∈ ( 𝐷 ∩ ( 𝐴 𝐿 𝑏 ) ) ) |
34 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) |
35 |
1 2 3 12 13 14 15
|
midbtwn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐴 𝐼 𝑏 ) ) |
36 |
1 3 6 12 14 15 17 26 35
|
btwnlng1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐴 𝐿 𝑏 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐴 𝐿 𝑏 ) ) |
38 |
34 37
|
elind |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐷 ∩ ( 𝐴 𝐿 𝑏 ) ) ) |
39 |
1 3 6 21 23 28 29 33 38
|
tglineineq |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( ( pInvG ‘ 𝐺 ) ‘ 𝐴 ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ) |
41 |
40
|
fveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐴 ) ‘ 𝐴 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ‘ 𝐴 ) ) |
42 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐴 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐴 ) |
43 |
1 2 3 6 16 21 24 42
|
mircinv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐴 ) ‘ 𝐴 ) = 𝐴 ) |
44 |
20 41 43
|
3eqtr2rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) → 𝐴 = 𝑏 ) |
45 |
10 44
|
mtand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ¬ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) |
46 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → 𝐺 ∈ TarskiG ) |
47 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → 𝐷 ∈ ran 𝐿 ) |
48 |
|
nne |
⊢ ( ¬ 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ↔ 𝐷 = ( 𝐴 𝐿 𝑏 ) ) |
49 |
45 48
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → 𝐷 = ( 𝐴 𝐿 𝑏 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → 𝐷 = ( 𝐴 𝐿 𝑏 ) ) |
51 |
50 47
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → ( 𝐴 𝐿 𝑏 ) ∈ ran 𝐿 ) |
52 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) |
53 |
1 2 3 6 46 47 51 52
|
perpneq |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) ∧ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) → 𝐷 ≠ ( 𝐴 𝐿 𝑏 ) ) |
54 |
45 53
|
mtand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ∧ ¬ 𝐴 = 𝑏 ) → ¬ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) |
55 |
54
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) → ( ¬ 𝐴 = 𝑏 → ¬ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) ) |
56 |
55
|
con4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) → 𝐴 = 𝑏 ) ) |
57 |
|
idd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) → ( 𝐴 = 𝑏 → 𝐴 = 𝑏 ) ) |
58 |
56 57
|
jaod |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) → ( ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) → 𝐴 = 𝑏 ) ) |
59 |
58
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐴 = 𝑏 ) |
60 |
59
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑏 = 𝐴 ) |
61 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → 𝑏 = 𝐴 ) |
62 |
61
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ) |
63 |
1 2 3 4 5 8 8
|
midid |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
64 |
63
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
65 |
62 64
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = 𝐴 ) |
66 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → 𝐴 ∈ 𝐷 ) |
67 |
65 66
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) |
68 |
61
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → 𝐴 = 𝑏 ) |
69 |
68
|
olcd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) |
70 |
67 69
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = 𝐴 ) → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
71 |
60 70
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = 𝐴 ) ) |
72 |
71
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) → ∀ 𝑏 ∈ 𝑃 ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = 𝐴 ) ) |
73 |
|
reu6i |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝑃 ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = 𝐴 ) ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
74 |
9 72 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
76 |
75
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → 𝐺 ∈ TarskiG ) |
77 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
79 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → 𝑥 ∈ 𝐷 ) |
80 |
1 6 3 76 78 79
|
tglnpt |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → 𝑥 ∈ 𝑃 ) |
81 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) |
82 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → 𝐴 ∈ 𝑃 ) |
84 |
1 2 3 6 16 76 80 81 83
|
mircl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝑃 ) |
85 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) → ( 𝐴 𝐿 𝑥 ) = ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ) |
86 |
85
|
breq1d |
⊢ ( 𝑥 = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) → ( ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ↔ ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ) |
87 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) |
88 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ¬ 𝐴 ∈ 𝐷 ) |
89 |
1 2 3 6 75 77 82 88
|
foot |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃! 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
90 |
|
reurmo |
⊢ ( ∃! 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 → ∃* 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃* 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
92 |
91
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ∃* 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
93 |
79
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑥 ∈ 𝐷 ) |
94 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
95 |
76
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐺 ∈ TarskiG ) |
96 |
83
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐴 ∈ 𝑃 ) |
97 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑏 ∈ 𝑃 ) |
98 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐺 DimTarskiG≥ 2 ) |
99 |
1 2 3 95 98 96 97
|
midcl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑃 ) |
100 |
1 2 3 95 98 96 97
|
midbtwn |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐴 𝐼 𝑏 ) ) |
101 |
88
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ¬ 𝐴 ∈ 𝐷 ) |
102 |
|
nelne2 |
⊢ ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ≠ 𝐴 ) |
103 |
87 101 102
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ≠ 𝐴 ) |
104 |
1 2 3 95 96 99 97 100 103
|
tgbtwnne |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐴 ≠ 𝑏 ) |
105 |
1 3 6 95 96 97 99 104 100
|
btwnlng1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ ( 𝐴 𝐿 𝑏 ) ) |
106 |
1 3 6 95 96 97 104 99 103 105
|
tglineelsb2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 𝐿 𝑏 ) = ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ) |
107 |
78
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐷 ∈ ran 𝐿 ) |
108 |
1 3 6 95 96 97 104
|
tgelrnln |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 𝐿 𝑏 ) ∈ ran 𝐿 ) |
109 |
104
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ¬ 𝐴 = 𝑏 ) |
110 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) |
111 |
110
|
orcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 = 𝑏 ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) ) |
112 |
111
|
ord |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( ¬ 𝐴 = 𝑏 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) ) |
113 |
109 112
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) |
114 |
1 2 3 6 95 107 108 113
|
perpcom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 𝐿 𝑏 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
115 |
106 114
|
eqbrtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
116 |
86 87 92 93 94 115
|
rmoi2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑥 = ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ) |
117 |
116
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = 𝑥 ) |
118 |
80
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑥 ∈ 𝑃 ) |
119 |
1 2 3 95 98 96 97 16 118
|
ismidb |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → ( 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = 𝑥 ) ) |
120 |
117 119
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) → 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) |
121 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) |
122 |
76
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
123 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝐺 DimTarskiG≥ 2 ) |
124 |
83
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
125 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝑏 ∈ 𝑃 ) |
126 |
80
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝑥 ∈ 𝑃 ) |
127 |
1 2 3 122 123 124 125 16 126
|
ismidb |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = 𝑥 ) ) |
128 |
121 127
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) = 𝑥 ) |
129 |
79
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → 𝑥 ∈ 𝐷 ) |
130 |
128 129
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) |
131 |
122
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐺 ∈ TarskiG ) |
132 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
133 |
6 131 132
|
perpln1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → ( 𝐴 𝐿 𝑥 ) ∈ ran 𝐿 ) |
134 |
78
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐷 ∈ ran 𝐿 ) |
135 |
1 2 3 6 131 133 134 132
|
perpcom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑥 ) ) |
136 |
124
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐴 ∈ 𝑃 ) |
137 |
126
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑥 ∈ 𝑃 ) |
138 |
1 3 6 131 136 137 133
|
tglnne |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐴 ≠ 𝑥 ) |
139 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑏 ∈ 𝑃 ) |
140 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐴 ≠ 𝑏 ) |
141 |
140
|
necomd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑏 ≠ 𝐴 ) |
142 |
1 2 3 6 16 131 137 81 136
|
mirbtwn |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑥 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
143 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) |
144 |
143
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → ( 𝑏 𝐼 𝐴 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
145 |
142 144
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑥 ∈ ( 𝑏 𝐼 𝐴 ) ) |
146 |
1 3 6 131 139 136 137 141 145
|
btwnlng1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑥 ∈ ( 𝑏 𝐿 𝐴 ) ) |
147 |
1 3 6 131 136 137 139 138 146 141
|
lnrot1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝑏 ∈ ( 𝐴 𝐿 𝑥 ) ) |
148 |
1 3 6 131 136 137 138 139 141 147
|
tglineelsb2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → ( 𝐴 𝐿 𝑥 ) = ( 𝐴 𝐿 𝑏 ) ) |
149 |
135 148
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ∧ 𝐴 ≠ 𝑏 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) |
150 |
149
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( 𝐴 ≠ 𝑏 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ) ) |
151 |
150
|
necon1bd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( ¬ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) → 𝐴 = 𝑏 ) ) |
152 |
151
|
orrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) |
153 |
130 152
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) ∧ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
154 |
120 153
|
impbida |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
155 |
154
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → ∀ 𝑏 ∈ 𝑃 ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
156 |
|
reu6i |
⊢ ( ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝑃 ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ↔ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐴 ) ) ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
157 |
84 155 156
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
158 |
1 2 3 6 75 77 82 88
|
footex |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃ 𝑥 ∈ 𝐷 ( 𝐴 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
159 |
157 158
|
r19.29a |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐷 ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |
160 |
74 159
|
pm2.61dan |
⊢ ( 𝜑 → ∃! 𝑏 ∈ 𝑃 ( ( 𝐴 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑏 ) ∨ 𝐴 = 𝑏 ) ) ) |