Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
1 2 3 4 5 6 7 8 9 9
|
islmib |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ) ) |
11 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ 𝐴 ) = 𝐴 ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
14 |
13
|
olcd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) |
15 |
14
|
biantrud |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ) ) |
16 |
1 2 3 4 5 9 9
|
midid |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
17 |
16
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ↔ 𝐴 ∈ 𝐷 ) ) |
18 |
15 17
|
bitr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ↔ 𝐴 ∈ 𝐷 ) ) |
19 |
10 12 18
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ 𝐷 ) ) |