Metamath Proof Explorer


Theorem lmiinv

Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
lmif.l 𝐿 = ( LineG ‘ 𝐺 )
lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
lmicl.1 ( 𝜑𝐴𝑃 )
Assertion lmiinv ( 𝜑 → ( ( 𝑀𝐴 ) = 𝐴𝐴𝐷 ) )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
7 lmif.l 𝐿 = ( LineG ‘ 𝐺 )
8 lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
9 lmicl.1 ( 𝜑𝐴𝑃 )
10 1 2 3 4 5 6 7 8 9 9 islmib ( 𝜑 → ( 𝐴 = ( 𝑀𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ) )
11 eqcom ( 𝐴 = ( 𝑀𝐴 ) ↔ ( 𝑀𝐴 ) = 𝐴 )
12 11 a1i ( 𝜑 → ( 𝐴 = ( 𝑀𝐴 ) ↔ ( 𝑀𝐴 ) = 𝐴 ) )
13 eqidd ( 𝜑𝐴 = 𝐴 )
14 13 olcd ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) )
15 14 biantrud ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ) )
16 1 2 3 4 5 9 9 midid ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 )
17 16 eleq1d ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷𝐴𝐷 ) )
18 15 17 bitr3d ( 𝜑 → ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 ) ∨ 𝐴 = 𝐴 ) ) ↔ 𝐴𝐷 ) )
19 10 12 18 3bitr3d ( 𝜑 → ( ( 𝑀𝐴 ) = 𝐴𝐴𝐷 ) )