| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
| 7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 9 |
|
lmiiso.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
lmiiso.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
lmiisolem.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) |
| 12 |
|
lmiisolem.z |
⊢ 𝑍 = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝐺 ∈ TarskiG ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
lmicl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
| 15 |
1 2 3 4 5 9 14
|
midcl |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 16 |
1 2 3 4 5 6 7 8 10
|
lmicl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 17 |
1 2 3 4 5 10 16
|
midcl |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝑃 ) |
| 18 |
1 2 3 4 5 15 17
|
midcl |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ∈ 𝑃 ) |
| 19 |
12 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝑍 ∈ 𝑃 ) |
| 21 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 22 |
1 2 3 7 21 4 19 11 9
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ 𝑃 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑆 ‘ 𝐴 ) ∈ 𝑃 ) |
| 24 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝐴 ∈ 𝑃 ) |
| 25 |
1 2 3 7 21 13 20 11 24
|
mircgr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑍 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑍 − 𝐴 ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑆 ‘ 𝐴 ) = 𝑍 ) |
| 27 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝑍 = ( 𝑆 ‘ 𝐴 ) ) |
| 28 |
1 2 3 13 20 23 20 24 25 27
|
tgcgreq |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝑍 = 𝐴 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 31 |
12 30
|
eqtr4id |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
| 33 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝐺 DimTarskiG≥ 2 ) |
| 34 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 35 |
1 2 3 32 33 34 34
|
midid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 36 |
31 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 = ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 37 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 14
|
islmib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ∨ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 39 |
37 38
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ∨ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 40 |
39
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 42 |
36 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 ∈ 𝐷 ) |
| 43 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
| 44 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 45 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝑃 ) |
| 46 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 ∈ 𝑃 ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 48 |
1 2 3 4 5 15 17
|
midbtwn |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 49 |
12 48
|
eqeltrid |
⊢ ( 𝜑 → 𝑍 ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 51 |
1 3 7 43 44 45 46 47 50
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 52 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 ∈ ran 𝐿 ) |
| 53 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 54 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ 𝐵 ) ) |
| 55 |
1 2 3 4 5 6 7 8 10 16
|
islmib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ 𝐵 ) ↔ ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ∨ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) ) ) ) |
| 56 |
54 55
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ∨ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 57 |
56
|
simpld |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝐷 ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝐷 ) |
| 59 |
1 3 7 43 44 45 47 47 52 53 58
|
tglinethru |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 60 |
51 59
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) → 𝑍 ∈ 𝐷 ) |
| 61 |
42 60
|
pm2.61dane |
⊢ ( 𝜑 → 𝑍 ∈ 𝐷 ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝑍 ∈ 𝐷 ) |
| 63 |
28 62
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → 𝐴 ∈ 𝐷 ) |
| 64 |
1 2 3 4 5 6 7 8 9
|
lmiinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ 𝐷 ) ) |
| 65 |
64
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐷 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
| 66 |
63 65
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
| 67 |
66 28
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑀 ‘ 𝐴 ) = 𝑍 ) |
| 68 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) = ( 𝑍 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 69 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝑍 = 𝑍 ) |
| 70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 71 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 72 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝑃 ) |
| 73 |
1 2 3 4 5 10 16
|
midbtwn |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
| 75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐵 = ( 𝑀 ‘ 𝐵 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 𝐼 𝐵 ) = ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
| 77 |
74 76
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ ( 𝐵 𝐼 𝐵 ) ) |
| 78 |
1 2 3 70 71 72 77
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐵 = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 79 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐵 = 𝐵 ) |
| 80 |
69 78 79
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 〈“ 𝑍 𝐵 𝐵 ”〉 = 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ) |
| 81 |
1 2 3 7 21 4 19 10 10
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝑍 𝐵 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 〈“ 𝑍 𝐵 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 83 |
80 82
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 84 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 85 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝑍 ∈ 𝐷 ) |
| 86 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝐷 ) |
| 87 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 88 |
|
df-ne |
⊢ ( 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ↔ ¬ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) |
| 89 |
56
|
simprd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ∨ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) ) |
| 90 |
89
|
orcomd |
⊢ ( 𝜑 → ( 𝐵 = ( 𝑀 ‘ 𝐵 ) ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 91 |
90
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) |
| 92 |
88 91
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) |
| 93 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) |
| 95 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ 𝑃 ) |
| 96 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 97 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 98 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 99 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → 𝐺 DimTarskiG≥ 2 ) |
| 100 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |
| 101 |
1 2 3 96 99 97 98 100
|
midcgr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → ( 𝐵 − 𝐵 ) = ( 𝐵 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → ( 𝐵 − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐵 − 𝐵 ) ) |
| 103 |
1 2 3 96 97 98 97 102
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) → 𝐵 = ( 𝑀 ‘ 𝐵 ) ) |
| 104 |
103
|
ex |
⊢ ( 𝜑 → ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = 𝐵 → 𝐵 = ( 𝑀 ‘ 𝐵 ) ) ) |
| 105 |
104
|
necon3d |
⊢ ( 𝜑 → ( 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ≠ 𝐵 ) ) |
| 106 |
105
|
imp |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ≠ 𝐵 ) |
| 107 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
| 108 |
1 3 7 84 87 93 95 94 107
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ∈ ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) |
| 109 |
1 3 7 84 87 93 94 95 106 108
|
tglineelsb2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) = ( 𝐵 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 110 |
1 3 7 84 95 87 106
|
tglinecom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 ) = ( 𝐵 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 111 |
109 110
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) = ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 ) ) |
| 112 |
92 111
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 ) ) |
| 113 |
1 2 3 7 84 85 86 87 112
|
perpdrag |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ ( 𝑀 ‘ 𝐵 ) ) → 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 114 |
83 113
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 115 |
1 2 3 7 21 4 19 17 10
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑍 − 𝐵 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) ) |
| 116 |
114 115
|
mpbid |
⊢ ( 𝜑 → ( 𝑍 − 𝐵 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) |
| 117 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 118 |
1 2 3 4 5 10 16 21 17
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ↔ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 119 |
117 118
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( 𝜑 → ( 𝑍 − ( 𝑀 ‘ 𝐵 ) ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) |
| 121 |
116 120
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑍 − 𝐵 ) = ( 𝑍 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑍 − 𝐵 ) = ( 𝑍 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 123 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( 𝑍 − 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 124 |
68 122 123
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) = 𝑍 ) → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 125 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐺 ∈ TarskiG ) |
| 126 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑆 ‘ 𝐴 ) ∈ 𝑃 ) |
| 127 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝑍 ∈ 𝑃 ) |
| 128 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ∈ 𝑃 ) |
| 129 |
1 2 3 7 21 4 19 11 14
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 131 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
| 132 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐵 ∈ 𝑃 ) |
| 133 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 134 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) |
| 135 |
1 2 3 7 21 125 127 11 128
|
mirbtwn |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝑍 ∈ ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 136 |
1 2 3 7 21 125 127 11 131
|
mirbtwn |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → 𝑍 ∈ ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
| 137 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝑍 = 𝑍 ) |
| 138 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 139 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 140 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 141 |
1 2 3 4 5 9 14
|
midbtwn |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
| 143 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐴 = ( 𝑀 ‘ 𝐴 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
| 145 |
142 144
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐼 𝐴 ) ) |
| 146 |
1 2 3 138 139 140 145
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 147 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐴 = 𝐴 ) |
| 148 |
137 146 147
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 〈“ 𝑍 𝐴 𝐴 ”〉 = 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ) |
| 149 |
1 2 3 7 21 4 19 9 9
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝑍 𝐴 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 〈“ 𝑍 𝐴 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 151 |
148 150
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 152 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 153 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝑍 ∈ 𝐷 ) |
| 154 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 155 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 156 |
|
df-ne |
⊢ ( 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ↔ ¬ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) |
| 157 |
39
|
simprd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ∨ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) |
| 158 |
157
|
orcomd |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 159 |
158
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) |
| 160 |
156 159
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) |
| 161 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
| 162 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) |
| 163 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑃 ) |
| 164 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → 𝐺 ∈ TarskiG ) |
| 165 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → 𝐴 ∈ 𝑃 ) |
| 166 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
| 167 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → 𝐺 DimTarskiG≥ 2 ) |
| 168 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) |
| 169 |
1 2 3 164 167 165 166 168
|
midcgr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → ( 𝐴 − 𝐴 ) = ( 𝐴 − ( 𝑀 ‘ 𝐴 ) ) ) |
| 170 |
169
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → ( 𝐴 − ( 𝑀 ‘ 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) |
| 171 |
1 2 3 164 165 166 165 170
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) → 𝐴 = ( 𝑀 ‘ 𝐴 ) ) |
| 172 |
171
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = 𝐴 → 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) |
| 173 |
172
|
necon3d |
⊢ ( 𝜑 → ( 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝐴 ) ) |
| 174 |
173
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝐴 ) |
| 175 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
| 176 |
1 3 7 152 155 161 163 162 175
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) |
| 177 |
1 3 7 152 155 161 162 163 174 176
|
tglineelsb2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) = ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 178 |
1 3 7 152 163 155 174
|
tglinecom |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 ) = ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 179 |
177 178
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 ) ) |
| 180 |
160 179
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 ) ) |
| 181 |
1 2 3 7 152 153 154 155 180
|
perpdrag |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝑀 ‘ 𝐴 ) ) → 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 182 |
151 181
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 183 |
1 2 3 7 21 4 19 15 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑍 − 𝐴 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) ) |
| 184 |
182 183
|
mpbid |
⊢ ( 𝜑 → ( 𝑍 − 𝐴 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) |
| 185 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 186 |
1 2 3 4 5 9 14 21 15
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 187 |
185 186
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) |
| 188 |
187
|
oveq2d |
⊢ ( 𝜑 → ( 𝑍 − ( 𝑀 ‘ 𝐴 ) ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) |
| 189 |
184 188
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑍 − 𝐴 ) = ( 𝑍 − ( 𝑀 ‘ 𝐴 ) ) ) |
| 190 |
1 2 3 7 21 4 19 11 9
|
mircgr |
⊢ ( 𝜑 → ( 𝑍 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑍 − 𝐴 ) ) |
| 191 |
1 2 3 7 21 4 19 11 14
|
mircgr |
⊢ ( 𝜑 → ( 𝑍 − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝑍 − ( 𝑀 ‘ 𝐴 ) ) ) |
| 192 |
189 190 191
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑍 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑍 − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑍 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑍 − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 194 |
1 2 3 125 127 126 127 130 193
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( ( 𝑆 ‘ 𝐴 ) − 𝑍 ) = ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) − 𝑍 ) ) |
| 195 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑍 − 𝐴 ) = ( 𝑍 − ( 𝑀 ‘ 𝐴 ) ) ) |
| 196 |
11
|
fveq1i |
⊢ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 197 |
1 2 3 4 5 9 14 11 19
|
mirmid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 198 |
12
|
eqcomi |
⊢ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) = 𝑍 |
| 199 |
1 2 3 4 5 15 17 21 19
|
ismidb |
⊢ ( 𝜑 → ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) = 𝑍 ) ) |
| 200 |
198 199
|
mpbiri |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 201 |
196 197 200
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 202 |
1 2 3 4 5 22 129 21 17
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
| 203 |
201 202
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 204 |
119 203
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 205 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 206 |
1 2 3 7 21 4 17 205 10 22
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝐵 − ( 𝑆 ‘ 𝐴 ) ) ) |
| 207 |
204 206
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑆 ‘ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐵 ) − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝐵 − ( 𝑆 ‘ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐵 ) − ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 209 |
1 2 3 125 132 126 133 130 208
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( ( 𝑆 ‘ 𝐴 ) − 𝐵 ) = ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) − ( 𝑀 ‘ 𝐵 ) ) ) |
| 210 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑍 − 𝐵 ) = ( 𝑍 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 211 |
1 2 3 125 126 127 128 130 127 131 132 133 134 135 136 194 195 209 210
|
axtg5seg |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝐴 − 𝐵 ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) ) |
| 212 |
211
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐴 ) ≠ 𝑍 ) → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 213 |
124 212
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |