Metamath Proof Explorer


Theorem lmimf1o

Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses islmim.b 𝐵 = ( Base ‘ 𝑅 )
islmim.c 𝐶 = ( Base ‘ 𝑆 )
Assertion lmimf1o ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 : 𝐵1-1-onto𝐶 )

Proof

Step Hyp Ref Expression
1 islmim.b 𝐵 = ( Base ‘ 𝑅 )
2 islmim.c 𝐶 = ( Base ‘ 𝑆 )
3 1 2 islmim ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) )
4 3 simprbi ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 : 𝐵1-1-onto𝐶 )