Metamath Proof Explorer


Theorem lmimfn

Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion lmimfn LMIso Fn ( LMod × LMod )

Proof

Step Hyp Ref Expression
1 df-lmim LMIso = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } )
2 ovex ( 𝑠 LMHom 𝑡 ) ∈ V
3 2 rabex { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ∈ V
4 1 3 fnmpoi LMIso Fn ( LMod × LMod )